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Outline

This is a preliminary version of a text providing introduction to Information

Theory.
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Information Theory: What and Why

• information: one of key terms in our society:

“INFORMATION IS MONEY”

and popular keywords like “information/knowledge society”

• information is a central topic in computer science:

– storage and retrieval of information: data structures, algorithms,

– search engines: Google etc.

– information security (secure communication, banking, national security,

etc.)

– knowledge representation (artificial intelligence)

– communication of information: technical means of passing information

(mobile technology, etc.)

• various meaning of information

– information as something new, possibly valuable

– information vs. data (sometimes confused)

• theories of information
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– various attempts to formalize the notion of information (semantic in-

formation, information logics)

– the most important so far is classical information theory and its

extensions

• basic features of classical information theory

– invented by Claude Shannon (American engineer and mathematician,

with IBM), seminal paper Shannon C. E.:“A Mathematical Theory of

Communicatio”, Bell System Technical Journal, 27, pp. 379-423 &

623-656, July & October, 1948.

–

– Wikipedia: “Information theory is the mathematical theory of data com-

munication and storage, generally considered to have been founded in

1948 by Claude E. Shannon. The central paradigm of classic informa-

tion theory is the engineering problem of the transmission of information

over a noisy channel. The most fundamental results of this theory are

Shannon’s source coding theorem, which establishes that on average

the number of bits needed to represent the result of an uncertain event

is given by the entropy; and Shannon’s noisy-channel coding theorem,

which states that reliable communication is possible over noisy channels
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provided that the rate of communication is below a certain threshold

called the channel capacity. The channel capacity is achieved with ap-

propriate encoding and decoding systems.

Information theory is closely associated with a collection of pure and

applied disciplines that have been carried out under a variety of ban-

ners in different parts of the world over the past half century or more:

adaptive systems, anticipatory systems, artificial intelligence, complex

systems, complexity science, cybernetics, informatics, machine learning,

along with systems sciences of many descriptions. Information theory

is a broad and deep mathematical theory, with equally broad and deep

applications, chief among them coding theory.

Coding theory is concerned with finding explicit methods, called codes,

of increasing the efficiency and fidelity of data communication over a

noisy channel up near the limit that Shannon proved is all but possible.

These codes can be roughly subdivided into data compression and error-

correction codes. It took many years to find the good codes whose

existence Shannon proved. A third class of codes are cryptographic

ciphers; concepts from coding theory and information theory are much

used in cryptography and cryptanalysis; see the article on deciban for

an interesting historical application.
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Information theory is also used in information retrieval, intelligence gath-

ering, gambling, statistics, and even musical composition.”

– information understood as decrease of uncertainty:

∗ suppose we an measure our uncertainty about a state X of some

system of our interest; U(X) . . . our uncertainty

∗ suppose some action A leads from state X1 to state X2

∗ information (carried) by A is defined by I(A) = U(X1)−U(X2) (information=decrease

of uncertainty)

∗ example: tossing a dice, X . . . possible outcomes, A . . . message say-

ing that a result is a number ≥ 5

– applications in communication theory (bounds to channels capacity),

coding and cryptography, decision making, learning

– has extensions (uncertainty-based information, based on measures of

uncertainty different from probabilistic)
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part I

PRELIMINARIES FROM
PROBABILITY
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The concept of a probability space

Introduction Probability theory studies situations (experiments, observations)
the outcomes of which are uncertain. The set of all possible outcomes is called
a sample space and is denoted by Ω, the outcomes ω ∈ Ω are called elementary
events. For instance, the experiment might by throwing a die. There are six
outcomes, ω1, . . . , ω6, where ωi is “the result is i”. In probability theory, we
also deal with events which are sets of elementary events. For instance, event
A = {ω2, ω4, ω6} might be described by “the result is an even number”. We
are interested only in a certain collection B of events, i.e. B ⊆ 2Ω. Then,
a function P , called a probability measure, assigns to each event A ∈ B a
number P (A), called a probability of event A. We require 0 ≤ P (A) ≤ 1; if
P (A) = 1, A is called a certain event; if P (A) = 0, A is called an impossible
event. For instance, with a fair die we might have P ({ω2, ω4, ω6}) = 1/2,
P ({ω2}) = 1/6, etc. The triplet 〈Ω,B, P 〉 is called a probability space (and it
is precisely defined).

The abstract notion of a probability space is due to A. N. Kolmogorov (1903–
1987, Soviet mathematician, one the most influential mathematicians).

Recall:

• σ-algebra (σ-fields, Borel field) of sets over a set Ω is a subset B ⊆ 2Ω

which satisfies
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– Ω ∈ B,

– if A ∈ B then A ∈ B (closedness under complements),

– if Ai ∈ B for i ∈ N then
⋃
i∈NAi ∈ B (closedness under countable unions).

• If B is a σ-algebra over Ω, then if A,B ∈ B then A ∪ B ∈ B, A ∩ B ∈ B,

A−B ∈ B, ∅ ∈ B (exercise).

• some useful facts:

• For any system F ⊆ 2Ω of subsets of Ω there exists a minimal σ-algebra

B(F) over Ω containing F. Proof: 2Ω itself is a σ-algebra over Ω; an

intersection of σ-algebras Bi over Ω is a σ-algebra over Ω; therefore,

B(F) =
⋂
{B | B is a σ-algebra containing F}.

• facts from measure theory (not required)

Definition A probability space is a triplet 〈Ω,B, P 〉 such that

• Ω is a non-empty set called sample space (výběrový prostor, prostor

elementárńıch jevu); ω ∈ Ω are called elementary events;

• B is a σ-algebra over Ω; A ∈ B are called events;
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• P is a function, called a probability measure, assigning to each A ∈ B a

real number P (A) ≥ 0, such that

– P (Ω) = 1 (probability of a certain event is 1),

– P (
⋃∞
i=1Ai) =

∑∞
i=1 P (Ai) for any sequence A1, A2, . . . of pairwise disjoint

events, i.e. Ai ∩Aj = ∅ for i 6= j (σ-additivity).

Lemma (properties of probability space) If 〈Ω,B, P 〉 is a probability space,

we have (for A,B ∈ B)

• 0 ≤ P (A) ≤ 1 for any A ∈ B,

• A ⊆ B implies P (A) ≤ P (B),

• P (∅) = 0,

• P (A) = 1− P (A),

• P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof Exercise.

Example (1) Let Ω = {ω1, . . . , ωn} be finite, B = 2Ω. Then if 〈Ω,B, P 〉 is

a probability space, P is uniquely given by its restriction to {ω1}, . . . , {ωn}.
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Indeed, due to σ-additivity, for A = {ωi1, . . . , ωik} we have P (A) = P ({ωi1}) +
· · ·+ P ({ωik}). In this case, we denote

P ({ωi}) also by P (ωi) or pi.

This means that in this case, a probability measure is completely given by a
vector 〈p1, . . . , pn〉 of reals pi ≥ 0 such that

∑n
i=1 pi = 1.

(2) The same holds true if Ω is countably infinite (but we have to deal with
infinite sums; note that if

∑∞
i=1 pi = 1 then this sum does not depend on the

order of p1, p2, . . ., i.e. for any bijection σ : N→ N we have
∑∞
i=1 pσ(i) = 1).

Spaces from Example (1) and (2) are called discrete probability spaces. For
Ω finite or countable, a function p : Ω→ [0,1] satisfying

∞∑
i=1

p(ωi) = 1

is called a probability distribution.

Therefore:

Theorem There exists a bijective correspondence between discrete probability
spaces and probability distributions.

Examples of discrete probability spaces: see any textbook on probability (bi-
nomial, geometric, Poisson, . . . ).
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Basic notions related to probability spaces

We suppose 〈Ω,B, P 〉 is a probability space and A,B, . . . ∈ B. Furthermore, we
require all quantities to be defined.

• Conditional probability. P (A) > 0 we call P (B|A) defined by

P (B|A) =
P (A ∩B)

P (A)

the conditional probability that B occurs given that A occurs. The thus
induced function P (·|A) is again a probability measure (verify!), called a
conditional probability measure.
Example:

• Independence. Events A,B ⊆ Ω are called independent if P (A ∩ B) =
P (A) · P (B). Clearly, if A and B are independent then P (A|B) = P (A)
(provided P (B) > 0) and P (B|A) = P (B) (provided P (B) > 0).
Example:

• Law of complete probabilities. Let B1, . . . , Bn be pairwise disjoint events
such that P (Bi) > 0 and P (

⋃n
i=1Bi) = 1. Then

P (A) =
n∑
i=1

P (A|Bi)P (Bi).
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Example:

• Bayes theorem. We have

P (B|A) =
P (B)P (A|B)

P (A)
.

Indeed, observe that P (A∩B) = P (B)P (A|B) = P (A)P (B|A). If B1, . . . , Bn

be pairwise disjoint events such that P (Bi) > 0 and P (
⋃n
i=1Bi) = 1, then

P (Bk|A) =
P (A|Bk)P (Bk)∑n
i=1 P (A|Bi)P (Bi)

.

Indeed, use the above form of Bayes theorem and the law of complete

probabilities. Bayes rule is crucial in inductive reasoning. B1, . . . , Bn are

called hypotheses, P (Bk|A) is called posterior probability of Bk after oc-

currence of A, P (Bk) is called prior probability of Bk.

Example: We have two coins, one fair (comes up heads and tails with

probabilities 1
2 and 1

2) and one biased (comes up heads). Experiment: We

chose a coin at random and flip the coin twice. What is the probability

that the chosen coin is biased if it comes up heads twice? Solution: We

can put

Ω = {〈c, a, b〉 | c ∈ {f, b}, a, b ∈ {h, t}}.
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Let A denote the event “biased coin was chosen”, B denote the event

“the coin comes up heads both times”. We are interested in P (A|B). By

Bayes theorem,

P (A|B) =
P (A)P (B|A)

P (B)
=

P (A)P (B|A)

P (B|A)P (A) + P (B|A)P (A)
=

=
1/2 · 1

1 · 1/2 + 1/4 · 1/2
=

4

5
.

• Joint and marginal probability. If Ω = X × Y then a probability

measure P on Ω is also called a joint probability (joint are X = {x1, . . . , xm}
and Y = {y1, . . . , yn}). Therefore, P is given by pij = P (xi, yj). The

functions P1(x) =
∑
y∈Y P (x, y) for x ∈ X (or simply P (x)) and P2(y)

for y ∈ Y (or P (y)) defined analogously, are called marginal probability

distributions. Furthermore, P (xi|yj) =
P ({xi}×{yj})

P (yj)
is called the conditional

probability of xi given yj (note that this is a special case of the above

definition of a conditional probability P (B|A): just take A = {〈x, yj〉 | x ∈ X}
and B = {〈xi, y〉 | y ∈ Y }). We say that xi and yj are independent if

P (xi, yj) = P (xi)P (yj) (again, this is a special case of the independence

defined above ).
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Random variables, discrete and continuous

Definition A random variable on a probability space 〈Ω,B, P 〉 is a function
X : Ω → R (assigning to any elementary event ω its numeric characteristic
X(ω) ∈ R we are interested in) such that for each x ∈ R we have {ω | X(ω) ≤
x} ∈ B, i.e. {ω | X(ω) ≤ x} is an event of the corresponding measurable
space. A tuple 〈X1, . . . , Xn〉 of random variables on 〈Ω,B, P 〉 is called a random
vector.

Example (1) dice, elementary events are x1, . . . x6, X(xi) = i;
(2) experiment with outputs xi each of them characterized by a real value ai
(e.g. ai is the weight of a randomly chosen ball xi).

Notation P (X ≤ x) denotes P ({ω ∈ Ω | X(ω) ≤ x}), etc.

Basic notions and facts Let X be a random variable on 〈Ω,B, P 〉.

• X induces a (cumulative) distribution function F : R→ [0,1] of X by

F (x) = P ({ω ∈ Ω | X(ω) ≤ x}).

• Properties of F (see course on probability).

• X induces a probability space 〈R,BX , PX〉 where BX is a Borel field on R
and

PX(A) = P ({ω | X(ω) ∈ A})
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for each A ∈ BX.

• Two basic types of random variables:

– discrete random variable if X takes at most countably many values

in R, i.e. {X(ω) | ω ∈ Ω} is finite or countably infinite. That is, there

are at most countably many values x1, x2, . . . such that P (X = xi) > 0

and we have
∑∞
i=1 P (X = xi) = 1. Function pi = p(xi) = P (X = xi) is

called a probability distribution (density) of X

– continuous random variable if F (x) =
∫ t
−∞ f(f)dt for some non-

negative real function f . Then f is called the probability density of

X.

• Expected value of X.

For X discrete: E(X) =
∑
xi xi · pi;

Example: n = 3, p1 = 0.1, x1 = 30, p2 = 0.4, x2 = 10, p3 = 0.5, x3 = 100;

E(X) = 57.

For X continuous: E(X) =
∫∞
−∞ xf(x)dx.

• More generally: If Y = h(X), i.e. Y (ω) = h(X(ω)) for some (Borel mea-

surable) function h : R→ R, then Y is again a random variable on 〈Ω,B, P 〉.
Then for the expected value of h(X) we have
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E(h(X)) =
∑
xi h(xi) · pi for discrete X, and

E(h(X)) =
∫∞
−∞ h(x)f(x)dx for continuous X.

Check this for discrete case. (The point is that by definition, E(h(X)) =∑
xi h(xi) · qi where qi = Ph(X)(X = xi) is the distribution of h(X).)

• Random vector, joint distribution, marginal distributions

– Random vector is a vector X = 〈X1, . . . , Xn〉 of random variables on
〈Ω,B, P 〉.

– The distribution function of X is a function F : Rn → [0,1] defined by

F (x1, . . . , xn) = P ({ω ∈ Ω | X1(ω) ≤ x1, . . . , Xn(ω) ≤ xn})

is called a joint distribution function of X.

– X is discrete if there is a finite or countably infinite series of n-tuples

〈x1, . . . , xn〉 such that P (X1 = x1, . . . Xn = xn) > 0 and
∑
〈x1,...,xn〉 P (X1 =

x1, . . . Xn = xn) = 1. For n = 2 we also write pij = p(xi, xj) =

pX1X2
(xi, xj) = P (X1 = xi, X2 = xj).

– Marginal distribution (n = 2, discrete X = 〈X1, X2〉) Marginal distri-

bution for X1 is a function

pX1
(xi) =

∑
yj

pX1X2
(xi, yj);
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marginal distribution for X2 is a function

pX2
(yj) =

∑
xi

pX1X2
(xi, yj).

• Independence of random variables Random variables X and Y on 〈Ω,B, P 〉
are called independent if for any Borel sets S, T ⊆ R we have that events
A = X−1(S) = {ω | X(ω) ∈ S} ∈ B and B = Y −1(T ) = {ω | Y (ω) ∈ T} ∈ B
are independent events. One can prove that X and Y are independent
iff for their distribution functions FX and FY , and the joint distribution
function F we have

F (x1, x2) = FX(x1) · FY (x2)

for any x1, x2 ∈ R. This is true iff:
pXY (xi, yj) = pX(x1) · pY (yj) for any xi, yj for discrete case, and
f(x, y) = f(x) · f(y) for any x, y for continuous case.

• Conditional distribution Let 〈X,Y 〉 be a two-dimensional discrete random
vector with joint probability distribution pij = P (X = xi, Y = yj). Then
conditional distribution of X under condition Y = yj is denoted by P (X =
xi|Y = yj) (also by p(xi|yj)) and is defined by

P (X = xi|Y = yj) =
P (X = xi, Y = yj)

P (Y = yj)
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if P (Y = yj) where P (Y = yj) is defined by P (Y = yj) =
∑
xi P (X = xi, Y =

yj).

• Conditional expected value is the expected value of a conditional distri-

bution of X under condition Y = yj. That is,

E(X|Y = yj) =
∑
xi

xi · P (X = xi|Y = yj).

• Note that if X and Y are independent, then P (X = xi|Y = yj) = P (X =

xi).
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part I

INFORMATION THEORY
BASIC CONCEPTS AND RESULTS
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Entropy

We suppose p is a probability distribution of a discrete random variable X (on

some probability space 〈Ω,B, P 〉) such that X takes only a finite number of

values, namely {x1, . . . , xn}. Furthermore, put and pi = p(xi) = P (X = xi).

Definition Uncertainty (or Shannon’s entropy) E(p) of a probability distri-

bution p is defined to be

E(X) = E(p) = E(p1, . . . , pn) = C
n∑
i=1

−pi log pi.

log denotes logarithm to the base 2, i.e. log p = log2 p.

We assume pi > 0 for all i (but we may have pi = 0 and then put 0 log 0 := 0.

C is a constant (it is only of a technical importance; we will assume C = 1 in

which case the units of E are bits).

E(p) is to be understood as follows. Let p describe all what we know about

the actual outcome of some experiment (but the notion of an experiment is

to be understood in a broad sense, like experiment=any process ending with a

result, the set of all results is {x1, . . . , xn}). Then E(p) expresses the amount

of uncertainty associated with p.
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Example (1) If X = {x1, x2} and p1 = p2 = 1/2 then E(p) = 1 (bit). So there

is an uncertainty of 1 (bit) associated with a random process with two equally

likely outputs.

(2) Tossing a fair die vs. tossing a biased die.

(3) Graph of E(p,1− p) for p ∈ [0,1] shows intuitive meaning of E.

The following theorem shows that E is not arbitrarily chosen. It is uniquely

determined by a system of natural axioms (requirements).
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Theorem (uniqueness) E is the only function satisfying

1. f(n) = E(1/n, . . . ,1/n) is a monotonically increasing function of n (here,

E(1/n, . . . ,1/n) is E(p) for p1 = 1/n, dots, pn = 1/n);

2. f(mn) = f(m) + f(n);

3. (branching)

E(p1, . . . , pn) = E(p1 + · · ·+ pr, pr+1 + · · ·+ pn) +

+(p1 + · · ·+ pr)E(p1/
r∑

i=1

pi, . . . , pr/
r∑

i=1

pi) +

+(pr+1 + · · ·+ pn)E(pr+1/
n∑

i=r+1

pi, . . . , pn/
n∑

i=r+1

pi);

4. E(p,1−p) is a continuous function of p (note that for any p ∈ [0,1], p1 = p,

p2 = 1− p describes a probability distribution on a two-element set).
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Two interpretations of E

First. E is (by the very definition) the average value of a random variable

X(x) = − log p(x).

Second. Imagine a test consisting of “yes/no” questions whose aim is to

determine the actual value xi (and that the probability that the actual value

is xi is pi = p(xi)). For example, one possible test (but not optimal) would

be a series of n questions “is the value x1?”, . . . , “is the value xn?” It can

be shown that E(p) is the minimum average number of questions of a test

necessary to determine the value xi (that is: we run a series of experiments

with the optimal test; we choose xi randomly according to p; then we run

the test and record the number of questions asked in the test (for different

xi’s the numbers may be different because each such a test is in fact a binary

tree of questions); then the assertion says that there is a test which ends in

average after E(p) questions and there is no better test!).

Radim Bělohlávek, Introduction to Information Theory and Its Applications †23



Basic properties

Lemma For positive numbers p1, . . . , pn and q1, . . . , qn with
∑n
i=1 pi =

∑n
i=1 qi =

1:

−
∑n
i=1 pi log pi ≤ −

∑n
i=1 pi log qi with equality iff pi = qi for all i.

Proof For convenience, we use natural logarithms (which is OK since log2 x =

log2 e · loge x).

• loge is a convex function, thus

• tangent at x = 1: point on loge lie below the tangent which is a function

x−1 (note that (loge x)′ = 1/x), i.e. loge x ≤ x−1 with equality iff x = 1, thus

• log(qi/pi) ≤ qi/pi−1 with equality iff pi = qi, thus multiplying by pi a summing

over i we get

•
∑
i pi loge qi/pi ≤

∑
i(qi − pi) = 1− 1 = 0 with equality iff pi = qi, thus

•
∑
i pi loge qi −

∑
i pi loge pi ≤ 0 with equality iff pi = qi. 2
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Theorem E(p) ≤ logn, with equality if and only if pi = 1/n.

Proof By above Lemma with qi = 1/n:

−
∑
i pi loge pi ≤ −

∑
i pi log 1/n = logn

∑
i pi = logn. 2

Therefore, E takes the maximal value if all results xi have probability 1/n—this

is surely the situation intuitively considered as most uncertain. On the other

hand, if for some i we have pi = 1 while pj = 0 for j 6= i, then E(p) = 0, i.e.

there is no uncertainty.
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Joint uncertainty

Suppose we have two random variables X and Y on 〈Ω,B, P 〉 (i.e. the same

experiment).

Suppose pij = p(xi, yj) (i = 1, . . . n,j = 1, . . . ,m) is a joint probability distribu-

tion of random vector 〈X,Y 〉.

Denote the marginal probability distributions by pi (i = 1, . . . , n, distribution

for X) and pj (j = 1, . . . ,m, distribution for Y ).

The joint uncertainty (joint entropy) is defined by

E(X,Y ) =
n∑
i=1

m∑
j=1

−pij log pij.

Theorem We have E(X,Y ) ≤ E(X) + E(Y ) with equality holding if and only

if X and Y (i.e. pij = pi · pj) are independent.

Proof Since p(xi) =
∑
j p(xi, yj), p(yj) =

∑
i p(xi, yj), we have

E(X) = −
∑
i

p(xi) log p(xi) = −
∑
i

∑
j

p(xi, yj) log p(xi)
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and

E(Y ) = −
∑
j

p(yj) log p(yj) = −
∑
i

∑
j

p(xi, yj) log p(yj).

It follows

E(X) + E(Y ) = −
∑
i

∑
j

p(xi, yj)[log p(xi) + log p(yj)] =

= −
∑
i

∑
j

p(xi, yj) log(p(xi)p(yj)) =

= −
∑
i

∑
j

p(xi, yj) log qij

with qij = p(xi)p(yj).

By definition, E(X,Y ) =
∑n
i=1

∑m
j=1−pij log pij.

Applying Lemma, we get

−
∑
i

∑
j

pij log pij ≤ −
∑
i

∑
j

pij log qij

with equality iff pij = qij.

Note that Lemma can be applied since∑
i

∑
j

qij =
∑
i

p(xi)
∑
j

p(yj) = 1 · 1 = 1.
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Therefore, E(X,Y ) ≤ E(X) +E(Y ) with equality iff pij = qij = p(xi)p(yj), i.e.

iff X and Y are independent. 2
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Conditional uncertainty

Recall that conditional distribution of Y under condition X = xi is given by

p(yj|xi) = p(xi, yj)/p(xi) (xi is fixed).

Under the above notation, the conditional uncertainty of Y given X = xi is

defined by

E(Y |X = xi) = −
m∑
j=1

p(yj|xi) log p(yj|xi).

The conditional uncertainty of Y given X, denoted E(Y |X), is defined as

the weighted average of E(Y |X = xi), i.e. by

E(Y |X) =
∑
i

p(xi)E(Y |X = xi) = −
∑
i

p(xi)
∑
j

p(yj|xi) log p(yj|xi).

Using p(xi, yj) = p(xi)p(yj|xi), we get

E(Y |X) = −
n∑
i=1

m∑
j=1

p(xi, yj) log p(yj|xi).

Theorem E(X,Y ) = E(X) + E(Y |X) = E(Y ) + E(X|Y ).
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Proof Directly by definition:

E(X,Y ) = −
∑
i

∑
j

p(xi, yj) log p(xi, yj) =

= −
∑
i

∑
j

p(xi, yj) log p(xi)p(yj|xi) =

= −
∑
i

∑
j

p(xi, yj) log p(xi)−
∑
i

∑
j

p(xi, yj) log p(yj|xi) =

= −
∑
i

p(xi) log p(xi) + E(Y |X) =

= E(X) + E(Y |X),

and similarly for E(X,Y ) = E(Y ) + E(X|Y ). 2

Theorem E(Y |X) ≤ E(Y ) with equality iff X and Y are independent.

Proof By the above Theorems, E(X,Y ) = E(X) + E(Y |X) and E(X,Y ) ≤
E(X)+E(Y ) with equality iff X and Y are independent. The assertion directly

follows. 2

Note: As E(X), both E(X,Y ) and E(Y |X) can be seen as expected values of

random variables (of W (X,Y ) = − log p(xi, yj) and W (Y |X) = − log p(yj, xi)).
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Information conveyed about X by Y

(or mutual information between X and Y ) is defined by

I(X|Y ) = E(X)− E(X|Y ).

Natural interpretation: the difference the uncertainty about X minus uncer-
tainty about X given Y .

Theorem We have
• I(X|Y ) ≥ 0,
• I(X|Y ) = 0 iff X and Y are independent,
• I(X|Y ) = I(Y |X).

Proof By above Theorem, E(X|Y ) ≤ E(X) and E(X|Y ) = E(X) iff X and Y

are independent. Therefore, I(X|Y ) = E(X) − E(X|Y ) ≥ 0, and I(X|Y ) = 0
iff X and Y are independent.

Furthermore, by above Theorem, E(X|Y ) = E(X,Y )− E(Y ), thus

I(X|Y ) = E(X) + E(Y )− E(X,Y ).

But since E(X,Y ) = E(Y,X), the required identity I(X|Y ) = I(Y |X) readily
follows. 2

(!) Sometimes it is said that information theory (and statistics in general) is
bad if we want to explain causality (it is the same both ways).
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Example (information conveyed about X by Y ) Two coins, one is unbiased

(probability distribution pH = pT = 1
2), one is two-headed (probability distri-

bution pH = 1, pT = 0), H . . . head, T . . . tail.

Experiment: A coin is tossed twice. The number of heads is recorded. How

much information is conveyed about which coin has been tossed by the number

of heads obtained (identity of the coin tossed)?

Initial observations: If the number of heads is < 2 then the unbiased coin

have been used; if the number of heads is = 2 then it is more likely that the

two-headed coin has been used (intuition).

Approach via information-theoretic concepts. Consider two random vari-

ables: X (X = 0 . . . unbiased coin, X = 1 . . . two-headed coin), Y (number

of heads, i.e. we may have Y = 0,1,2). Consider a random vector 〈X,Y 〉.

Then we have (verify):

P (X = 0) = 1
2, P (X = 0) = 1

2,

P (Y = 0) = 1
8, P (Y = 1) = 1

4, P (Y = 2) = 5
8,

P (X = 0|Y = 0) = 1, P (X = 0|Y = 1) = 1, P (X = 0|Y = 2) = 1
5.

Before knowing the number of heads, the uncertainty of the identity of the

coin is
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E(X) = log 2 = 1.

The uncertainty of X given Y is

E(X|Y ) = P (Y = 0)H(X|Y = 0) + P (Y = 1)H(X|Y = 1) + P (Y = 2)H(X|Y = 2) =

=
1

8
0 +

1

4
0−

5

8
(
1

5
log

1

5
+

4

5
log

4

5
) =

= 0.45.

Therefore, the answer is

I(X|Y ) = E(X)− E(X|Y ) = 0.55bits.

Gain: Quantitative answer, well-founded. 2
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Exercise(Ash, Information Theory) In a school, 3
4 of the students pass and 1

4
fail.

Of those who pass, 10 percent own cars, of those who fail, 50 percent own

cars.

All of the car-owning students belong to fraternities,

40 percent of those who do not own cars but pass belong to fraternities,

40 percent of those who do not own cars but fail belong to fraternities.

Questions:

(a) How much information is conveyed about a student’s academic standing

by specifying whether or not he owns a car?

(b) How much information is conveyed about a student’s academic standing

by specifying whether or not he belongs to fraternity?

(c) If a student’s academic standing, car-owning status, and fraternity status

are transmitted by three successive binary digits, how much information is

conveyed by each digit?
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part II

INFORMATION THEORY
SELECTED APPLICATIONS
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DECISION TREES

basic features

• a data mining technique

• we present a method of construction of decision trees developed in

Quinlan J. R.: Induction of decision trees. Machine Learning 11(1)(1986),

81–106.

• more advanced method(s) can be found in Quinlan J. R.: C4.5: Programs

for Machine Learning. Morgan Kaufman, San Francisco, 1993.

• any textbook on machine learning/data mining (e.g. Berka P.: Dobýváńı

znalost́ı z databáźı, Academia, Praha, 2003).
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basic concepts

• input: data table with input attributes y1, . . . , ym and output attribute y

with val(y) = {c1, . . . , ck} (val(y) . . . values of attribute y)

• ci . . . classes (labels of classes) to which objects are to be classified

• example: (S . . . small, M . . . medium, T . . . tall)

name gender height class
A. male 185cm T
B. female 150cm S
C. female 179cm T
D. male 163cm S
E. male 170cm M
F. male 180cm M
G. female 169cm M

here:

y1 . . . gender (val(y1) = {male, female}),

y2 . . . height (val(y2) = [50,250]),

y . . . class (val(y) = {S, M, T}).

• objects: A.–G.
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• row (A., male, 185cm, T) says: object with values of input variables being
“male” and “185” is to be classified as “T”.

• goal: given a data table, develop a suitable decision tree

What is a decision tree:

• in short: a tree used for classification

• rooted tree where

• each leaf is labeled by a class label (from c1, . . . , ck)

• each inner node (including root) is assigned an input variable yi (one of
y1, . . . , ym),

• out of each inner node there goes a finite (usually small) number of edges
to its successor nodes;

• each edge going from a node labeled by yi is assigned a binary condition
C for values of yi (this means: each value a ∈ val(yi) either satisfies C or
not) such that different edges going from a node are assigned mutually
exclusive conditions (that is: each value a ∈ val(yi) satisfies at most one
condition)
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• examples of conditions: “gender is male”, “gender is female”, “height is
≥ 185cm”, “height is = 180cm”, etc.

given a decision tree, a classification of an object given by values (a1, . . . , am)
of input variables (y1, . . . , ym) proceeds as follows:

• current node := root node;

• while current node is not a leaf do
current node := successor S of current node N (N is labeled by yi) for

which the condition assigned to the edge from N to S is satisfied for ai;

• output value is the class label assigned to the leaf at which we arrived

A decision tree which correctly classifies all the objects from the input data
table is not unique. So:

What makes a decision tree a good decision tree?

• a decision tree should be as small as possible (height, width): if presented
to a user, it should be comprehensible

• it should classify well the data in the input table but also further data which
may come for classification in future (this is referred to as generalization
capability of decision trees)
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In the following, we present algorithm ID3 (proposed by Quinlan).

First, some simplifying assumptions and features of ID3:

• For each input variable yi, the set val(yi) is finite. This excludes e.g. real-

valued variables like “height”. For these variables, one can divide val(yi)

into a finite number of intervals ([50,55), [55,60), . . . , [245,250)). Divi-

sion into intervals can even be found automatically to be optimal (details

omitted).

• We require all input data be classified correctly. However, it might be

useful to allow for some small number of errors in classification of input

data. Namely, input data may contain noise (errors). Insisting on correct

classification of all input data would lead to poor generalization capability.

• Variable yi assigned to an inner node is called a splitting variable. Each

condition assigned an edge going from a node with splitting variable has

the form yi = a where a ∈ val(yi).

More advanced versions of Quinlan’s basic ID3 algorithm can be found in:

Quinlan J. R.: C4.5: Programs for Machine Learning. Morgan Kaufman, San

Francisco, 1993.
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ID3 algorithm for inducing decision trees

INPUT: data table T = 〈X,Y, T 〉,
with Y = {y1, . . . , ym, y}, yi . . . input variable, y . . . output variable, val(yi)

finite, val(y) = {c1, . . . , ck}, T (x, yi) . . . value of yi on x

OUTPUT: decision tree DT

ID3 ALGORITHM

buildDT(T )

1. if all objects from T have the same value cj of output variable y then

DT := single node labeled by cj and STOP;

else

2. determine the best splitting variable yi for T ;

3. DT := new node labeled by yi;

4. for each value a ∈ val(yi) of yi:

(a) create an edge going from the node labeled by yi and label it by yi = a;
(b) T ′ := new table which results from T by restricting on objects satisfying

yi = a (i.e. objects x with T (x, yi) = a, all other objects get deleted)
(c) add to the new edge a decision tree which results as buildDT(T ′)

Remarks
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• buildDT() is a recursive procedure;

• for a given a ∈ val(yi), T ′ = 〈X ′, Y, T ′〉 results from T = 〈X ′, Y, T 〉 by

X ′ = {x ∈ X | T (x, yi) = a} and T ′(x, yj) = T (x, yj) for x ∈ X ′ and yj ∈ Y
(T ′ is a restriction of T )

• what remains to be specified is the choice of a best splitting variable for a

given table T .

Choice of the best splitting variable for T :

1. intuition:

pick input variable yi ∈ Y such that, if possible, for each a ∈ val(yi), all the

objects from X which satisfy yi = a, have the same value of the output

variable c (why: then each node to which there leads an edge labeled yi = a

becomes a leaf and the tree is low)

2. more precisely (and in general):

if this is not possible, pick yi such that “on an average choice of a ∈
val(yi)”, the distribution of the values of the output variable y to the

objects from X which satisfy yi = a has “small entropy” (entropy=0 means

all have the same value of y).
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NOW:
2. can be formalized using information theory, namely:

best splitting attribute = attribute yi with minimal conditional entropy
(uncertainty) E(y|yi)

BUT: How can we see attributes y1, . . . , yn, y as random variables? As follows:

• consider a probability distribution p on X, |X| = n, with p({x}) = 1/n
(equiprobable elementary events, rovnomerne rozdeleni);

• then each z ∈ Y = {y1, . . . , ym, y} can be seen as a random variable on X

assigning to an object x ∈ X a value T (x, z) ∈ val(z);

• and so we have

p(z = a) = p({x ∈ X | T (x, z) = a}) =
|{x ∈ X | T (x, z) = a}|

n

and we can speak of entropies E(yi) of input variables, entropy E(y) of the
output variable, conditional entropies E(y|yi), etc.

Recall basic facts (see part Information Theory):

• p(y = a, yi = b) = p({x ∈ X | T (x, y) = a, T (x, yi) = b}), p(y = a|yi = b) =
p(y = a, yi = b)/p(yi = b),
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• E(y|yi) =
∑
b∈val(yi)

p(yi = b) · E(y|yi = b)

• E(y|yi = b) = −
∑
a∈val(y) p(y = a|yi = b) log p(y = a|yi = b) = −

∑
a∈val(y) p(y =

a, yi = b)/p(yi = b) log p(y = a, yi = b)/p(yi = b)

Note that E(y|yi) = 0 means that for each b ∈ val(yi) we have: either E(y|yi =

b) = 0, i.e. for each b ∈ val(yi), all objects satisfying yi = b have the same

value of y (belong to the same class)

or p(yi = b) = 0, i.e. value b does not appear in column labeled yi

Remark The probability distribution p (and all the other variates including

conditional probability E(y|yi)) are relative to the data table T . T changes

during ID3!
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Decision trees: example

input taken from Berka P.: Dobýváńı znalost́ı z databáźı, Academia, Praha,

2003.

client income account gender unemployed credit
1 H H F No Yes
2 H H M No Yes
3 L L M No No
4 L H F Yes Yes
5 L H M Yes Yes
6 L L F Yes No
7 H L M No Yes
8 H L F Yes Yes
9 L M M Yes No
10 H M F No Yes
11 L M F Yes No
12 L M M No Yes

income (i): H . . . high, L . . . low,

account (a, amount of money on account): H . . . high, M . . . medium, L

. . . low,

gender (g): M . . . male, F . . . female

Radim Bělohlávek, Introduction to Information Theory and Its Applications †45



credit (c): whether a credit is to be approved for a client
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case 1. At the beginning, T is the whole table. We need to compute E(c|i),

E(c|a), E(c|g), E(c|u):

E(c|i) = p(i = H) · E(c|i = H) + p(i = L) · E(c|i = L) =

= 5/12 · E(c|i = H) + 7/12 · E(c|i = L) ≈ 5/12 · 0 + 7/12 · 0.985 =

≈ 0.575,

since

E(c|i = H) = −p(c = Y es, i = H)/p(i = H) · log[p(c = Y es, i = H)/p(i = H)]−
−p(c = No, i = H)/p(i = H) · log[p(c = No, i = H)/p(i = H)] =

= 1 log 1− 0 · log 0 = 0− 0 = 0

and

E(c|i = L) = −p(c = Y es, i = L)/p(i = L) · log[p(c = Y es, i = L)/p(i = L)]−
−p(c = No, i = L)/p(i = L) · log[p(c = No, i = L)/p(i = L)] =

= −3/7 log 3/7− 4/7 · log 4/7 =≈ 0.985.

And similarly:

E(c|a) ≈ 0.667, E(c|g) ≈ 0.918, E(c|u) ≈ 0.825.
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⇒ the best splitting attribute is i, which leads to creation of a new node N1

labeled by i from which there are two edges, one labeled by i = H, the other

one labeled i = L.

case 1.1. for i = H, the corresponding T ′ results from T by deleting all

objects with values of i different from H. In this table, all the objects have a

value of c equal to Yes. This leads to creation of a new node N2 labeled by

Yes (leaf).

case 1.2. for i = L, the corresponding T ′ results from T by deleting all

objects with values of i different from L. In this table, not all of the objects

have the same value of c. The algorithm continues by computing buildDT(T ′).

To get the best splitting attribute, we do not need to consider i since it was

used already (it is easily seen that E(c|i) = E(c) ≥ E(c|z) for any z = a, g, u;

and this holds true in general).

Proceeding this way (but note that the table changed and we need to compute

the entropies for the new table T ′), we get

E(c|a) ≈ 0.396, E(c|g) ≈ 0.965, E(c|u) ≈ 0.979.

⇒ the best splitting atribute is a and we create a new node N3 labeled a with

three edges labeled by a = H, a = M , a = L.
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case 1.2.1. For a = H, all objects (i.e. satisfying i = L and a = H) have
value of c equal to Yes. This leads to creation of a new node N4 labeled by
Yes (leaf).

case 1.2.2. for a = M , the corresponding T ′′ results from T ′ by deleting
all objects with values of a different from M . In this table, not all of the
objects have the same value of c. The algorithm continues by computing
buildDT(T ′′). We need to compute E(c|g) and E(c|u) from T ′′. We get

E(c|g) ≈ 0.667, E(c|u) = 0.

⇒ the best splitting atribute is u and we create a new node N5 labeled u with
three edges labeled by u = Y es, u = No.

case 1.2.2.1 For u = Y es, all objects (i.e. satisfying i = L, a = L, u = Y es)
have value of c equal to No. This leads to creation of a new node N7 labeled
by No (leaf).

case 1.2.2.2 For u = No, all objects (i.e. satisfying i = L, a = L, u = No)
have value of c equal to Yes. This leads to creation of a new node N8 labeled
by Yes (leaf).

case 1.2.3. For a = L, all objects (i.e. satisfying i = L and a = L) have
value of c equal to No. This leads to creation of a new node N6 labeled by
No (leaf).
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OUTPUT decision tree:

nodes (node, label) are (N1, i), (N2, Y ES), (N3, a), (N4, Y es), (N5, u), (N6, No),

(N7, No), (N8, Y es),

edges (sourceNode, targetNode, label) are (N1, N2, i = H), (N1, N3, i = L),

(N3, N4, a = H), (N3, N5, a = M), (N3, N6, a = L), (N5, N7, u = Y es),

(N5, N8, u = No).
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Further topics and extensions of ID3

Ovetraining: Occurs when decision tree is constructed to classify correctly

all records in the input (training) table. This might not be desirable because

input data may contain noise which is then learned.

Way out: Stop stop splitting nodes earlier. For example, stop splitting a node

if p% (e.g., p = 90) of records corresponding to this node has the same value

for the output attribute. Note: Stopping criterion for exact classification uses

p = 100 (employed in the above ID3).

Algorithm C4.5: extension consists in

– Handles missing data (very simple, ignores items needed for computation

which contain missing data).

– Continuous data. Divides data into ranges based on the values of contin-

uous attributes.

– Pruning (simplification of decision trees). Subtree replacement (a subtree

is replaced by a node if the classification error after such replacement is

close to the one before replacement) is one strategy.

– Rules. Deals explicitly with classification rules corresponding to decision

trees. Techniques for simplification of rules.
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– Other strategies for the choice of splitting attributes.

Algorithm C5.0: commercial extension of C4.5

– Targeted for large datasets.

– Fast and memory efficient.

– Better accuracy (achieved due to boosting strategies).

– Algorithms not available.
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Other approaches to classification

– Regression. Particularly for numeric data (linear/non-linear regression).

– Bayes classification. Highly developed approach. Based on Bayes theorem.

– Assume the tuples in the dataset are ti = 〈ai, ci〉 (just one input attribute

for simplicity).

– From the data, we can compute P (ai), P (ai|cj), P (cj).

– Using Bayes theorem, we get

P (cj|ai) =
P (ai|cj)P (cj)

Σk
j=1P (ai|cj)P (cj)

k is the number of values of the output attribute (c1, . . . , ck). Given ai,

we select the class cj for which P (cj|ai) is the largest.

– This can be extended to ti = 〈ai1, . . . , ain, ci〉 under the assumption of

independence of input variables. This way we come to so-called naive

Bayes classifiers (“naive” because we assume independence).

– Distance-based classification, e.g., kNN (k nearest neighbors). For a new

record (tuple) t to classify, we select k nearest records from the training
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data. Then t belongs to the class which contains the majority of the k

nearest records.

– Neural networks. Backpropagation networks (multilayered feedforward net-

works), RBF (radial basis function networks), SVM (support vector ma-

chines).

– Recent approaches based on discrete mathematical structures. LAD (log-

ical analysis of data), approaches based on FCA.
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