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Concept lattices are systems of conceptual clusters, called formal concepts, which are
partially ordered by the subconcept/superconcept relationship. Concept lattices are basic

structures used in formal concept analysis. In general, a concept lattice may contain
overlapping clusters and need not be a tree. On the other hand, tree-like classification
schemes are appealing and are produced by several clustering methods. In this paper, we
present necessary and sufficient conditions on input data for the output concept lattice
to form a tree after one removes its least element. We present these conditions for input
data with yes/no attributes as well as for input data with fuzzy attributes. In addition,
we show how Lindig’s algorithm for computing concept lattices gets simplified when
applied to input data for which the associated concept lattice is a tree after removing
the least element. The paper also contains illustrative examples.
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1. Problem Description

Generating collections of clusters from data is a challenging part of knowledge dis-

covery. Among many methods performing this task, formal concept analysis (FCA)

is becoming increasingly popular, see Refs. 7, 10. The main aim of FCA is to extract

interesting clusters (called formal concepts) from tabular data along with a partial

order of these clusters (called conceptual hierarchy). Formal concepts correspond

to maximal rectangles in a data table and are easily interpretable by users. FCA

and its methods have been used in two ways. First, as a direct method of data

analysis in which case the hierarchically ordered collection of formal concepts ex-

tracted from data is presented to a user/expert for further analysis, see e.g. Ref. 7

for such examples of FCA applications. Second, as a data preprocessing method in

which case the extracted clusters are used for further processing, see e.g. Ref. 18

for applications of FCA in association rule mining.

Unlike several other clustering and classification techniques,1,8 which yield clus-

tering and classification trees, FCA yields diagrams of hierarchically ordered clusters

which are richer than trees. Namely, the diagrams are lattices and are called concept

lattices. A practical difference is that concept lattices usually contain overlapping

clusters. Another difference is that the clusters in FCA are based on sharing of

attributes rather than distance. FCA can thus be thought of as a new method of

clustering and classification which is substantially different from conventional meth-

ods. Although FCA has been justified by many real-world applications already, see

e.g. Ref. 7, the following quote from John Hartigan, a leading expert in clustering

and classification, is relevant1,8:

“My second remark is about future focus. We pay too much at-

tention to the details of the algorithms. . . . It is more important

to think about the purposes of clustering, about the types of clus-

ters we wish to construct, . . . These details are interesting, . . . , but

we have plenty of algorithms already. . . . what kinds of families of

classes should we be looking for? At present, we think of parti-

tions, trees, sometimes overlapping clusters; these structures are a

faint echo of the rich classifications available in everyday language.

. . . We must seek sufficiently rich class of structures . . . ”

The present paper seeks to contribute to the problem of establishing relation-

ships between FCA and other methods of clustering and classification. Needless to

say, this goal requires a long-term effort. In this paper we consider a particular

problem. Namely, we present conditions for input data which are necessary and

sufficient for the output concept lattice to form a tree after removing its least ele-

ment. In addition, we present illustrative examples and several remarks on related

efforts and future research topics. Note that a related problem, namely, of selecting

a tree from a concept lattice by means of constraints using attribute-dependency

formulas, was considered in Ref. 5.
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Section 2 presents preliminaries. Section 3 presents the main results, illustrative

examples, and remarks. Section 4 presents conclusions and an outline of future

research.

2. Preliminaries

In this section, we summarize basic notions of formal concept analysis (FCA). An

object-attribute data table describing which objects have which attributes can be

identified with a triplet 〈X, Y, I〉 where X is a non-empty set (of objects), Y is

a non-empty set (of attributes), and I ⊆ X × Y is an (object-attribute) relation.

In FCA, 〈X, Y, I〉 is called a formal context. Objects and attributes correspond to

table rows and columns, respectively, and 〈x, y〉 ∈ I indicates that object x has

attribute y (table entry corresponding to row x and column y contains × or 1; if

〈x, y〉 6∈ I the table entry contains blank symbol or 0). For each A ⊆ X and B ⊆ Y

denote by A↑ the subset of Y and by B↓ the subset of X defined by

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I}, (1)

B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}. (2)

Described verbally, A↑ is the set of all attributes from Y shared by all objects from

A and B↓ is the set of all objects from X sharing all attributes from B. A formal

concept in 〈X, Y, I〉 is a pair 〈A, B〉 of A ⊆ X and B ⊆ Y satisfying A↑ = B and

B↓ = A. That is, a formal concept consists of a set A (so-called extent) of objects

which fall under the concept and a set B (so-called intent) of attributes which

fall under the concept such that A is the set of all objects sharing all attributes

from B and, conversely, B is the collection of all attributes from Y shared by all

objects from A. Alternatively, formal concepts can be defined as maximal rectangles

(submatrices) of 〈X, Y, I〉 which are full of ×’s: For A ⊆ X and B ⊆ Y , 〈A, B〉 is a

formal concept in 〈X, Y, I〉 iff A × B ⊆ I and there is no A′ ⊃ A or B′ ⊃ B such

that A′ × B ⊆ I or A × B′ ⊆ I .

The set B(X, Y, I) = {〈A, B〉 |A↑ = B, B↓ = A} of all formal concepts

in 〈X, Y, I〉 can be equipped with a partial order ≤ (modeling the subconcept-

superconcept hierarchy, e.g. dog ≤ mammal) defined by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1). (3)

Under ≤, B(X, Y, I) happens to be a complete lattice, called the concept lattice of

〈X, Y, I〉, the basic structure of which is described by a so-called main theorem of

concept lattices10:

Theorem 1. (1) The set B(X, Y, I) equipped with ≤ is a complete lattice where the

infima and suprema are given by

∧

j∈J 〈Aj , Bj〉 =
〈
⋂

j∈J Aj , (
⋃

j∈J Bj)
↓↑

〉

, (4)
∨

j∈J 〈Aj , Bj〉 =
〈

(
⋃

j∈J Aj)
↑↓,

⋂

j∈J Bj

〉

. (5)
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(2) Moreover, an arbitrary complete lattice V = 〈V,≤〉 is isomorphic to B(X, Y, I)

iff there are mappings γ : X → V , µ : Y → V such that

(i) γ(X) is
∨

-dense in V , µ(Y ) is
∧

-dense in V ;

(ii) γ(x) ≤ µ(y) iff 〈x, y〉 ∈ I.

Note that a subset K ⊆ V is
∨

-dense in V (
∧

-dense in V ) if for every v ∈ V

there is K ′ ⊆ K such that v =
∨

K ′ (v =
∧

K ′). Note also that the operators ↑

and ↓ form a so-called Galois connection10 and that B(X, Y, I) is in fact the set of

all fixed points of ↑ and ↓. That is, ↑ and ↓ satisfy the following conditions:

A ⊆ A↑↓, (6)

if A1 ⊆ A2 then A2
↑ ⊆ A1

↑, (7)

B ⊆ B↓↑, (8)

if B1 ⊆ B2 then B2
↓ ⊆ B1

↓, (9)

for each A, A1, A2 ⊆ X and B, B1, B2 ⊆ Y . Furthermore, the composed operators
↑↓ : 2X → 2X and ↓↑ : 2Y → 2Y are closure operators in X and Y , respectively. As a

consequence, A ⊆ X is an extent of some concept in B(X, Y, I) (i.e., there is B ⊆ Y

such that 〈A, B〉 ∈ B(X, Y, I)) iff A = A↑↓, i.e. A is closed under ↑↓. Analogously

for intents.

Concept lattices are the primary output of formal concept analysis. There is

another output of FCA which is equally important, namely, so-called non-redundant

bases of attribute implications. An attribute implication is an expression A ⇒ B

where A, B ⊆ Y with Y being the same set of attributes as above. An attribute

implication A ⇒ B is called true in M ⊆ Y , written M |= A ⇒ B, if the following

condition is satisfied:

if A ⊆ M then B ⊆ M.

If M ⊆ Y represents a set of attributes of some object x then M |= A ⇒ B has the

following meaning: “if x has all attributes from A, then x has all attributes from

B”. Thus, attribute implications are particular if-then rules describing dependencies

between attributes.

Given a formal context 〈X, Y, I〉, for each x ∈ X we define a set Ix of attributes

Ix = {y ∈ Y | 〈x, y〉 ∈ I}, i.e. Ix is the set of all attributes of object x in 〈X, Y, I〉.

Notice that Ix corresponds to a row in the data table representing the formal context

〈X, Y, I〉. An attribute implication A ⇒ B is called true in 〈X, Y, I〉, written I |=

A ⇒ B, iff Ix |= A ⇒ B for each x ∈ X . Hence, I |= A ⇒ B iff for each object

x ∈ X we have: if x has all attributes from A, then x has all attributes from B.

The set of all attribute implications which are true in 〈X, Y, I〉 is, along with

the concept lattice B(X, Y, I), the basic output of FCA. Unfortunately, the set of

all attribute implications is usually too large and it cannot be presented to users

directly. Therefore, we use a special indirect description of all attribute implications

being true in 〈X, Y, I〉. Namely, we select from all the attribute implications in
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question a small subset from which the other implications follow. This can be done

using the following notions.

Let T be any set of attribute implications. A set M ⊆ Y of attributes is called

a model of T , if M |= A ⇒ B for each A ⇒ B ∈ T . The set of all models of T will

be denoted by Mod(T ), i.e.

Mod(T ) = {M ⊆ Y | for each A ⇒ B ∈ T : M |= A ⇒ B}. (10)

An attribute implication A ⇒ B follows from T (A ⇒ B is semantically entailed by

T ), written T |= A ⇒ B, if M |= A ⇒ B for each M ∈ Mod(T ). A set T of attribute

implications is called complete in 〈X, Y, I〉 if, for each attribute implication A ⇒ B,

we have

T |= A ⇒ B iff I |= A ⇒ B,

i.e., if the attribute implications which are entailed by T are exactly the attribute

implications which are true in 〈X, Y, I〉. Hence, if T is complete in 〈X, Y, I〉, then

T describes exactly the attribute implications which are true in 〈X, Y, I〉. This is

important especially if T is “reasonably small”. Therefore, we define the following

notion. A set T of attribute implications is a non-redundant basis of 〈X, Y, I〉 if (i)

T is complete in 〈X, Y, I〉 and (ii) no proper subset of T is complete in 〈X, Y, I〉.

Alternatively, a non-redundant basis of 〈X, Y, I〉 can be described as a complete set

of attribute implications such that no implication in the set is entailed by the other

implications in that set. There have been proposed algorithms to generate, given

〈X, Y, I〉, a non-redundant basis of 〈X, Y, I〉, see e.g. Refs. 9, 10, 13.

For detailed information on formal concept analysis and lattice theory we refer

to Refs. 7, 10, 11 where a reader can find theoretical foundations, methods and

algorithms, and applications in various areas.

3. Trees in Concept Lattices

In this section we will be interested in concept lattices corresponding to trees. Trees

are usually defined as undirected graphs that are acyclic and connected.12 Since

we are going to identify trees in particular ordered sets, we deal with trees as with

ordered sets. In particular, a finite partially ordered set 〈U,≤〉 will be called a tree

if for each a, b ∈ U :

(i) there is a supremum of a and b in 〈U,≤〉, and

(ii) there is an infimum of a and b in 〈U,≤〉 iff a and b are comparable

(i.e., iff a ≤ b or b ≤ a).

Obviously, 〈U,≤〉 being a tree corresponds to the usual graph-theoretical rep-

resentation of a rooted tree. The root of 〈U,≤〉 is the supremum of all elements

from U (which exists in 〈U,≤〉 because U is finite). An element u ∈ U is a direct

descendant of w ∈ U iff u < w, and there is no v ∈ U such that u < v < w.
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From Theorem 1 it follows that each concept lattice is a complete lattice. Hence,

the above-mentioned condition (i) is satisfied for each B(X, Y, I). On the other hand,

(ii) need not be satisfied. It is easily seen that (ii) is satisfied iff B(X, Y, I) is linearly

ordered. So, the whole concept lattice is a tree iff it is linearly ordered, which is not

a worthwhile observation because linear trees are a degenerate form of trees and

therefore not interesting. Because of the observation we have just made, we turn our

attention to trees which form important parts of concept lattices. We focus mainly

on trees which appear in B(X, Y, I) if we remove its least element.

Since concept lattices are complete lattices, each concept lattice B(X, Y, I) has

both the greatest and least element. Namely, 〈X, X↑〉 is the greatest element (con-

cept of all objects) of B(X, Y, I) and 〈Y ↓, Y 〉 is the least one (concept of objects

sharing all attributes from Y ). If 〈X, Y, I〉 does not contain an attribute shared by

all objects (i.e., a table representing 〈X, Y, I〉 does not contain a column full of ×’s),

which is quite common if 〈X, Y, I〉 represents real-world data, then 〈X, X↑〉 equals

〈X, ∅〉. Analogously, if there is no object sharing all the attributes from Y (i.e., a

table representing 〈X, Y, I〉 does not contain a row full of ×’s), 〈Y ↓, Y 〉 becomes

〈∅, Y 〉.

In what follows we investigate under which conditions B(X, Y, I) becomes a tree

if we remove its least element.

3.1. Formal contexts generating trees

For brevity, let B(X, Y, I) − {〈Y ↓, Y 〉} be denoted by B�(X, Y, I). Note that if we

consider B�(X, Y, I), we assume that it is equipped with a partial order which is a

restriction of the partial order defined by (3) to elements of B�(X, Y, I).

The following assertion characterizes when B�(X, Y, I) is a tree in terms of

extents of formal concepts.

Theorem 2. Let 〈X, Y, I〉 be a formal context. Then B�(X, Y, I) is a tree iff, for

any concepts 〈A, B〉, 〈C, D〉 ∈ B(X, Y, I) at least one of the following is true:

(i) A ⊆ C or C ⊆ A,

(ii) A ∩ C ⊆ Y ↓.

Proof. Let B�(X, Y, I) be a tree. Take any concepts 〈A, B〉, 〈C, D〉 ∈ B(X, Y, I).

If (i) is satisfied for A and C, we are done. Hence, assume that (i) is not satis-

fied, i.e. we have A * C and C * A. From the definition of ≤, see (3), it fol-

lows that 〈A, B〉 � 〈C, D〉 and 〈C, D〉 � 〈A, B〉, i.e. formal concepts 〈A, B〉 and

〈C, D〉 are incomparable. Therefore, both 〈A, B〉 and 〈C, D〉 are in B�(X, Y, I). Since

B�(X, Y, I) is supposed to be a tree, the infimum of 〈A, B〉 and 〈C, D〉 does not ex-

ist in B�(X, Y, I). It means that the infimum of 〈A, B〉 and 〈C, D〉 in B(X, Y, I)

is 〈Y ↓, Y 〉 because B�(X, Y, I) results from B(X, Y, I) by removing 〈Y ↓, Y 〉 and

B(X, Y, I) is a complete lattice. Using (4), we get that Y ↓ = A ∩ C, showing (ii).
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Conversely, let (i) and (ii) be satisfied for any 〈A, B〉, 〈C, D〉 ∈ B(X, Y, I). Take

〈A, B〉, 〈C, D〉 ∈ B�(X, Y, I) such that 〈A, B〉 and 〈C, D〉 are incomparable. Such

〈A, B〉 and 〈C, D〉 cannot satisfy (i), i.e. we have A ∩ C ⊆ Y ↓. Hence, using (4),

the infimum of 〈A, B〉 and 〈C, D〉 in B(X, Y, I) is the least element of B(X, Y, I).

As a consequence, 〈A, B〉 and 〈C, D〉 do not have an infimum in B�(X, Y, I), which

proves that B�(X, Y, I) is a tree.

Theorem 2 can also be formulated in terms of intents of formal concepts:

Corollary 1. B�(X, Y, I) is a tree iff, for each 〈A, B〉, 〈C, D〉 ∈ B(X, Y, I) we either

have (i) B ⊆ D or D ⊆ B, or (ii) (B ∪ D)↓ ⊆ Y ↓.

Remark 1. If 〈Y ↓, Y 〉 is equal to 〈∅, Y 〉, i.e. if the table representing 〈Y ↓, Y 〉 does

not contain a row full of ×’s (or 1’s), then (ii) in Theorem 2 gets simplified to

A ∩ C = ∅, i.e. A and C are required to be disjoint.

Example 1. Consider a set of objects X = {1, 2, . . . , 14} (objects are denoted

by numbers) and a set of attributes Y = {g, h, . . . , z}. If we consider the formal

context 〈X, Y, I〉 which is represented by the data table in Fig. 1 (left) then the

corresponding B�(X, Y, I), which is depicted in Fig. 1 (right), is a tree. The root of

the tree represents concept 〈X, ∅〉. The other nodes are numbered and the intents

of the corresponding concepts are the following:

1: {i, r}, 5: {m, s, z}, 9: {g, m, n, q, s, v, z},

2: {i, o, r}, 6: {g, m, n, s, v, z}, 10: {m, s, x, z},

3: {i, l, o, r}, 7: {g, j, m, n, p, s, t, v, z}, 11: {h, m, s, x, z},

4: {i, r, w}, 8: {g, j, k, m, n, p, s, t, u, v, z}, 12: {m, s, y, z}.

If two nodes are connected by an edge, the lower concept has a strictly greater

intent. Using this observation, we can decorate edges of the tree by attributes being

added to intents of lower concepts as it is shown in Fig. 1 (right). One can check

that all the intents from B(X, Y, I) satisfy the conditions of Corollary 1.

Now, an important question is whether we can check that B�(X, Y, I) is a tree

directly from the context 〈X, Y, I〉, i.e. without computing the set of all concepts

first. We shall show that this is indeed possible. We will take advantage of the

following notion.

Definition 1. Let 〈X, Y, I〉 be a formal context. We say that 〈X, Y, I〉 generates a

tree if B�(X, Y, I) is a tree.

Recall that due to (2), {y}↓ is the set of all objects sharing the attribute y.

That is, {y}↓ naturally corresponds to a column in the data table representing

〈X, Y, I〉. Such “columns” will play an important role in the following theorem

which characterizes contexts generating trees.
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g h i j k l m n o p q r s t u v w x y z

1. 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1
2. 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
3. 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
4. 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1
5. 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 0 0 1
6. 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1
7. 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1
8. 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
9. 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1

10. 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
11. 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1
12. 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
13. 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1
14. 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

∅

1

2

3

4

5

6

7

8

9

10

11

12

i, r

o

l

w

m, s, z

g, n, v

j, p, t

k, u

q

x

h

y

Fig. 1. Formal context generating a tree.

Theorem 3. Let 〈X, Y, I〉 be a formal context. Then 〈X, Y, I〉 generates a tree iff,

for any attributes y1, y2 ∈ Y , at least one of the following conditions is true:

(i) {y1}↓ ⊆ {y2}↓,

(ii) {y2}↓ ⊆ {y1}↓,

(iii) {y1}↓ ∩ {y2}↓ ⊆ Y ↓.

Proof. Assume that 〈X, Y, I〉 generates a tree, i.e. B�(X, Y, I) is a tree. Each pair

of the form 〈{y}↓, {y}↓↑〉 is a formal concept from B(X, Y, I), see Ref. 10. Therefore,

Theorem 2 yields that the above conditions (i)–(iii), being particular instances of

(i) and (ii) from Theorem 2, are satisfied.

Conversely, suppose that 〈X, Y, I〉 does not generate a tree. Thus, there are

incomparable formal concepts 〈A1, B1〉, 〈A2, B2〉 ∈ B(X, Y, I) whose infimum is not

equal to the least element of B(X, Y, I). That is, for 〈A1, B1〉 and 〈A2, B2〉 we

have A1 * A2, A2 * A1, and A1 ∩ A2 * Y ↓. Note that as a consequence we

get that B1 * B2 and B2 * B1. We now show that we can pick from B1 and

B2 two attributes violating the above conditions (i)–(iii). Since B1 * B2, there

is y1 ∈ B1 such that y1 6∈ B2. Analogously, there is y2 ∈ B2 such that y2 6∈ B1

because B2 * B1. For y1 and y2 we can show that (i) is not satisfied. Indeed, from

y1 ∈ B1 = A1
↑ and (9) it follows that

A1 ⊆ {y1}
↓. (11)

Moreover, y2 6∈ B1 = A1
↑ gives that there is x ∈ A1 such that 〈x, y2〉 6∈ I . Hence,

there is x ∈ A1 such that x 6∈ {y2}↓, i.e. we get

A1 * {y2}
↓. (12)

As an immediate consequence of (11) and (12) we get that {y1}↓ * {y2}↓, i.e.

condition (i) is violated. In a symmetric way (i.e., with y1 and y2 interchanged),

we can also show that (ii) is violated. So, now it remains to show that (iii) cannot

be satisfied. But this is now easy to see. From y1 ∈ B1, y2 ∈ B2, and (9) we get
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A1 = B1
↓ ⊆ {y1}↓ and A2 = B2

↓ ⊆ {y2}↓ which yield A1 ∩ A2 ⊆ {y1}↓ ∩ {y2}↓.

Therefore, from A1 ∩ A2 * Y ↓ it follows that {y1}↓ ∩ {y2}↓ * Y ↓, showing that

(iii) is not satisfied. Altogether, we have shown that if 〈X, Y, I〉 does not generate

a tree, then there are y1, y2 ∈ Y such that none of (i)–(iii) is satisfied.

Remark 2. Conditions (i)–(iii) from Theorem 3 say that, roughly speaking, for

each two columns of a data table, either one of the columns is contained in the

other, or the columns have in common only attributes shared by all objects. In

particular, if no row of the data table contains all ×’s (or 1’s), the latter condition

says that the columns do not have any attributes in common. Note that (i)–(iii)

can be checked with asymptotic time complexity O(n3), where n is the maximum

of |X | and |Y |.

Theorem 3 can be restated as follows:

Corollary 2. A formal context 〈X, Y, I〉 generates a tree iff, for any y1, y2 ∈ Y ,

we either have {y1}↓ ∩ {y2}↓ ∈ {{y1}↓, {y2}↓}, or {y1}↓ ∩ {y2}↓ ⊆ Y ↓.

We now turn our attention to a converse problem. Given a tree (defined possibly

by its graph-theoretical representation), we wish to find a formal context which

generates the tree. First, let us note that for each tree such a context exists. This

is, in fact, a consequence of the main theorem of concept lattices. In more detail,

consider a graph G = 〈V, E〉 which is a tree.12 We say that edge e1 ∈ E is under

e2 ∈ E (in G) if G contains a path v1, e1, . . . , v2, e2, . . . ending in the root node of

G (for the notions involved, see Ref. 12). We now get the following characterization.

Theorem 4. Let G = 〈V, E〉 be a tree. Define a formal context 〈E, E, IG〉 such

that 〈e1, e2〉 ∈ IG iff e1 is under e2 in G. Then 〈E, E, IG〉 generates a tree which

is isomorphic to G = 〈V, E〉.

Proof. Follows from Theorem 1 by standard verification.

Example 2. If we return to Example 1 and consider the tree from Fig. 1 (right) as

an input tree, we may construct a formal context generating that tree as follows.

First, we choose a labeling of edges. For instance, we may choose the labeling as in

Fig. 2 (left). Then, a formal context which corresponds to 〈E, E, IG〉 from Theorem 4

is given by the data table in Fig. 2 (right). Since we have labeled the edges in a

depth-first manner, 〈E, E, IG〉 is in a lower-triangular form. By Theorem 4, the

tree B�(E, E, IG) generated from 〈E, E, IG〉 is isomorphic to the initial tree.

3.2. Characterization of trees by attribute implications

In the previous section, we have shown that contexts generating trees can be char-

acterized based on the dependencies between attributes (columns of data tables
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10 R. Bělohlávek et al.

e1

e2

e3

e4

e5

e6

e7

e8

e9
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e12

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

e
9

e
1
0

e
1
1

e
1
2

e1 1 0 0 0 0 0 0 0 0 0 0 0
e2 1 1 0 0 0 0 0 0 0 0 0 0
e3 1 1 1 0 0 0 0 0 0 0 0 0
e4 1 0 0 1 0 0 0 0 0 0 0 0
e5 0 0 0 0 1 0 0 0 0 0 0 0
e6 0 0 0 0 1 1 0 0 0 0 0 0
e7 0 0 0 0 1 1 1 0 0 0 0 0
e8 0 0 0 0 1 1 1 1 0 0 0 0
e9 0 0 0 0 1 1 0 0 1 0 0 0

e10 0 0 0 0 1 0 0 0 0 1 0 0
e11 0 0 0 0 1 0 0 0 0 1 1 0
e12 0 0 0 0 1 0 0 0 0 0 0 1

Fig. 2. Tree and its generating formal context.

representing formal contexts). Since attribute dependencies are often expressed by

attribute implications, it is tempting to look at trees in a concept lattice from the

point of view of attribute implications.

The following assertion characterizes contexts generating trees by means of at-

tribute implications.

Theorem 5. Let 〈X, Y, I〉 be a formal context. Then 〈X, Y, I〉 generates a tree iff,

for any attributes y1, y2 ∈ Y , at least one of the following is true in 〈X, Y, I〉:

(i) I |= {y1}⇒{y2},

(ii) I |= {y2}⇒{y1},

(iii) I |= {y1, y2}⇒Y .

Proof. Note that attribute implications being true in 〈X, Y, I〉 can be characterized

using the operators ↑ and ↓ induced by 〈X, Y, I〉. Namely, one can check that I |=

A ⇒ B iff, for each x ∈ X , if A ⊆ {x}↑ then B ⊆ {x}↑ which is iff, for each x ∈ X ,

if x ∈ A↓ then x ∈ B↓ which is true iff A↓ ⊆ B↓, see Ref. 10. Thus, (i) and (ii)

are true iff {y1}↓ ⊆ {y2}↓ and {y2}↓ ⊆ {y1}↓, cf. Theorem 3 (i) and (ii). Moreover,

(iii) is true iff we have {y1}↓ ∩ {y2}↓ = ({y1} ∪ {y2})↓ = {y1, y2}↓ ⊆ Y ↓. Using

Theorem 3, we finally obtain that 〈X, Y, I〉 generates a tree iff, for any y1, y2 ∈ Y ,

at least one of (i)–(iii) is true.

3.3. Algorithms for trees in concept lattices

Trees in concept lattices, as they were introduced in the previous sections, can be

computed by algorithms for computing formal concepts. Currently, there have been

proposed several algorithms, see e.g. Refs. 7, 10, 16 and a survey paper.15 Some of

the algorithms for FCA get simplified in the case of contexts generating trees.

For instance, Lindig’s algorithm for generating formal concepts gets simplified

due to the fact that it is no longer necessary to organize the concepts found in

some type of searching structure, because we cannot generate the same concept
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Algorithm 1.

procedure Neighbors (B):

U := ∅
Min := Y − B
for each y ∈ Y − B:

D := (B ∪ {y})↓↑

Increased := D − (B ∪ {y})

if Min ∩ Increased = ∅:

add D to U

else :

remove y from Min

return U

procedure GenerateFrom (B):

while B 6= Y :

Bdescendant := Neighbors (B)

for each D ∈ Bdescendant :

set Dparent to B

call GenerateFrom (D)

multiple times. Indeed, recall from Ref. 16 that Lindig’s algorithm is based on the

NextNeighbors procedure which, given a concept as its input, generates all its

(lower or upper) neighbors. Then, all concepts are computed using a recursive pro-

cedure which first uses NextNeighbors to compute neighbors of a given concept

and then recursively processes all the neighbors to obtain further concepts. Dur-

ing the computation, the original procedure has to ensure that no concept will

be processed twice (or multiple times). Therefore, the procedure must organize all

found concepts in a suitable searching structure which allows us to check whether

a concept has already been found. Needless to say, the searching structure should

be efficient because the tests of presence of a concept between the found concepts

influences the overall efficiency of the procedure. The searching structure is usually

implemented as a searching tree or a hashing table.

In case of a formal context generating a tree, this part of the algorithm need not

be implemented at all because the only concept that can be computed multiple times

is 〈Y ↓, Y 〉 which is excluded from B�(X, Y, I). This allows to design an algorithm

which is faster and simpler to implement.

The core of the algorithm for computing the tree is shown in Algorithm 1. The

procedure Neighbors accepts, as its argument, an intent which corresponds in our

case to a tree node. The output of Neighbors is the set of all descendants of the

node. Note that this procedure is the same as NextNeighbors. The procedure

GenerateFrom from Algorithm 1 is a procedure that generates the tree nodes

together with the edges between them. GenerateFrom accepts a root of the tree

which is given by the intent ∅↓↑. Given the root, GenerateFrom recursively gen-

erates all nodes. After the procedure finishes, for each node B, Bparent will be the

parent node of B and the nodes contained in Bdescendant will be the descendants

of B.
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3.4. Extension to fuzzy attributes

Formal concept analysis has been extended to data with fuzzy attributes, see e.g.

Refs. 3, 17, and also Ref. 4. In this case, attributes are allowed to apply to objects

to degrees from a suitable set L of truth degrees such as the unit interval [0, 1].

This situation is captured by the notion of a formal fuzzy context, which is a triplet

〈X, Y, I〉 where X and Y are ordinary sets of objects and attributes and I is a

fuzzy relation between X and Y with truth degrees from L. That is, I is a mapping

I : X × Y → L assigning to every object x ∈ X and every attribute y ∈ Y a degree

I(x, y) to which x has y (y applies to x). The set L of truth degrees needs to be

equipped with appropriate truth functions of logical connectives. Before proceeding,

we recall some necessary notions from fuzzy logic and fuzzy sets. More details can

be found in the monographs.3,14

A complete residuated lattice, which is our basic structure of truth degrees, is an

algebra L = 〈L,∧,∨,⊗,→, 0, 1〉, where 〈L,∧,∨, 0, 1〉 is a complete lattice, 〈L,⊗, 1〉

is a commutative monoid, and ⊗ and → satisfy the so-called adjointness property,

i.e. a⊗b ≤ c iff a ≤ b → c.3,14 Each a ∈ L is called a truth degree; ⊗ and → are (truth

functions of) “fuzzy conjunction” and “fuzzy implication”. Complete residuated

lattices include structures of truth degrees defined on the real unit interval with ∧

and ∨ being minimum and maximum, ⊗ being a left-continuous t-norm with the

corresponding →. Finite residuated lattices represent another important subfamily

of complete residuated lattices. A particular finite residuated lattice is the Boolean

algebra with L = {0, 1} (structure of truth degrees of classical logic). Given L which

serves as a structure of truth degrees, we introduce the usual structural notions: an

L-set (fuzzy set) A in universe U is a mapping A : U → L, A(u) being interpreted as

“the degree to which u belongs to A”. LU denotes the collection of all L-sets in U .

The operations with L-sets are defined componentwise. For instance, intersection

of L-sets A, B ∈ LU is an L-set A ∩ B in U such that (A ∩ B)(u) = A(u) ∧ B(u)

(u ∈ U). For each u ∈ U and a ∈ L, we let {a/u} denote L-set in U such that

({a/u})(u) = a and, for each v 6= u, ({a/u})(v) = 0. Binary L-relations (binary

fuzzy relations) between U and V can be thought of as L-sets in U × V . Given

A, B ∈ LU , we put A ⊆ B iff A(u) ≤ B(u) for each u ∈ U .

Let now L be a complete residuated lattice and let 〈X, Y, I〉 be a formal fuzzy

context with truth degrees from L. For A ∈ LX , B ∈ LY (i.e. A is a fuzzy set of

objects, B is a fuzzy set of attributes), we define fuzzy sets A↑ ∈ LY (fuzzy set of

attributes), B↓ ∈ LX (fuzzy set of objects) by

A↑(y) =
∧

x∈X

(

A(x) → I(x, y)
)

,

B↓(x) =
∧

y∈Y

(

B(y) → I(x, y)
)

.

Described verbally, A↑ is the fuzzy set of all attributes from Y shared by all objects

from A (and similarly for B↓). A formal fuzzy concept in 〈X, Y, I〉 is a pair 〈A, B〉

of A ∈ LX and B ∈ LY satisfying A↑ = B and B↓ = A. That is, a fuzzy concept

consists of a fuzzy set A (extent) of objects which fall under the concept and a fuzzy
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set B (intent) of attributes which fall under the concept such that A is the fuzzy

set of all objects sharing all attributes from B and, conversely, B is the fuzzy set of

all attributes from Y shared by all objects from A.

The collection B(X, Y, I) = {〈A, B〉 |A↑ = B, B↓ = A} of all formal fuzzy

concepts in 〈X, Y, I〉 can be equipped with a partial order ≤ defined by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1). (13)

Note that ↑ and ↓ form a so-called fuzzy Galois connection3 and that B(X, Y, I) is

in fact the set of all fixed points of ↑ and ↓. Under ≤, B(X, Y, I) happens to be a

complete lattice, called the fuzzy concept lattice of 〈X, Y, I〉. The basic structure

of fuzzy concept lattices is described by the so-called main theorem of concept

lattices.3,4

Remark 3. It can be easily seen that if L = {0, 1}, the above-introduced notions

of a formal fuzzy context, operators ↑ and ↓, formal fuzzy concept, fuzzy concept

lattice, etc., can be identified with their ordinary counterparts introduced in Section

2. This way, FCA generalizes ordinary FCA.

Next, we present results characterizing fuzzy concept lattices which are trees

(after removing the least element), analogous to the results from Section 3.1.

Theorem 6. Let 〈X, Y, I〉 be a formal fuzzy context with truth degrees from a com-

plete residuated lattice L. Then 〈X, Y, I〉 generates a tree iff, for any attributes

y1, y2 ∈ Y and any a1, a2 ∈ L, at least one of the following conditions is true:

(i) {a1/y1}↓ ⊆ {a2/y2}↓,

(ii) {a2/y2}
↓ ⊆ {a1/y1}

↓,

(iii) {a1/y1}↓ ∩ {a2/y2}↓ ⊆ Y ↓ (here, by abuse of notation, Y denotes a full fuzzy

set, i.e. Y (y) = 1 for any y).

Proof. The proof is based on a reduction theorem from Ref. 2 and Theorem 3.

The reduction theorem from Ref. 2 says that the fuzzy concept lattice B(X, Y, I) is

isomorphic to an ordinary concept lattice B(X × L, Y × L, I×) where X × L and

Y ×L are the Cartesian products (objects × truth degrees, and attributes × truth

degrees) and I× is an ordinary relation between X × L and Y × L defined by

〈〈x, a〉, 〈y, b〉〉 ∈ I× iff a ⊗ b ≤ I(x, y).

Moreover, Ref. 2 provides “translation formulas” between the fuzzy setting for

B(X, Y, I) and the ordinary setting for B(X × L, Y × L, I×). For an ordinary set

C ⊆ U × L and a fuzzy set D ∈ LU denote by dCe ∈ LU a fuzzy set in U and by

bDc an ordinary subset of U defined by

dCe(u) =
∨

〈u,a〉∈C a, and bDc = {〈u, a〉 | a ≤ D(u)}.

Then, for the Galois connection ∧,∨ associated to B(X × L, Y × L, I×) we have

B∨ = bdBe↓c, see Ref. 2.
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Because of the isomorphism, B(X, Y, I) is a tree iff B(X×L, Y ×L, I×) is a tree.

Therefore, by Theorem 3, B(X, Y, I) is a tree iff for any y1, y2 ∈ Y and a1, a2 ∈ L

we have (i’) {〈y1, a1〉}∨ ⊆ {〈y2, a2〉}∨, or (ii’) {〈y2, a2〉}∨ ⊆ {〈y1, a1〉}∨, or (iii’)

{〈y1, a1〉}∨ ∩ {〈y2, a2〉}∨ ⊆ (Y × L)∨. Now, (i’) is equivalent to condition (i) from

the present theorem, (ii’) is equivalent to (ii), and (iii’) is equivalent to (iii). Indeed,

for (i’) and (i): {〈yi, ai〉}∨ = bd{ai/yi}e↓c and a routine verification shows that

bd{a1/y1}e↓c ⊆ bd{a2/y2}e↓c iff {a1/y1}↓ ⊆ {a2/y2}↓. Due to symmetry, (ii) and (ii’)

are equivalent, too. For (iii) and (iii’), the proof follows by observing that for fuzzy

sets A, B, and C we have that bAc ∩ bBc ⊆ bCc is equivalent to A ∩ B ⊆ C.

A similar reasoning can be applied to obtain a generalization of Theorem 5.

4. Conclusions and Future Research

We presented conditions for input data for FCA which are necessary and sufficient

for the output concept lattice to form a tree after one removes its least element. Trees

are the most common structures which appear in traditional clustering and classi-

fication. Future research will focus on establishing connections between FCA and

other clustering and classification methods. First, establishing such relationships

helps us see the pros and cons, and limits of the respective methods. Second, with

the basic relationships established, one can hopefully enrich the respective methods

by techniques used in the other methods. The problems we want to address next

include the following ones:

– A concept lattice can be seen as consisting of several overlapping trees. What

can we say about such a “decomposition” of a concept lattice into trees? What

are the relationships between these trees?

– A user of FCA might be interested in a part of a concept lattice rather than

in the whole lattice. Particularly, that part might be a tree, but other parts

might be interesting as well. The issue of selecting parts of concept lattices by

constraints was discussed in Refs. 5, 6. In particular, it can be shown that a tree

contained in a concept lattice can be selected by means of a particular closure

operator. Constraints which lead to tree-like parts of concept lattices need to

be further investigated.

– Investigate connections between concept lattices and decision trees. Both con-

cept lattices and decision trees contain clusters of objects in their nodes. Leafs

of a decision tree correspond to particular attribute-concepts. The construction

of a decision tree may be thought of as the selection of a particular part from

a concept lattice. Containment of decision trees in concept lattices needs to be

further investigated.
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