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Abstract. Formal concept analysis (FCA) is a method of exploratory
data analysis. The data is in the form of a table describing relationship
between objects (rows) and attributes (columns), where table entries
are grades representing degrees to which objects have attributes. The
main output of FCA is a hierarchical structure (so-called concept lattice)
of conceptual clusters (so-called formal concepts) present in the data.
This paper focuses on algorithmic aspects of FCA of data with graded
attributes. Namely, we focus on the problem of generating efficiently all
clusters present in the data together with their subconcept-superconcept
hierarchy. We present theoretical foundations, the algorithm, analysis of
its efficiency, and comparison with other algorithms.

1 Introduction

Our paper contributes to the area of exploratory analysis of tabular data.
Namely, we focus on data supplied as tables with rows corresponding to ob-
jects and columns corresponding to attributes. Datasets of this form are often
described by bivalent (presence/absence) attributes. That is, each attribute ei-
ther applies or does not apply to a particular object. The corresponding data
table is thus binary, i.e., it is a matrix filled with 0’s (the object given by row does
not have the attribute given by column) and 1’s (the object given by row has
the attribute given by column). Formal concept analysis (FCA) [8,20] aims at
revealing all “conceptual clusters” (so-called formal concepts) which are hidden
in the binary data table. Formal concepts are particular clusters of objects and
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attributes that correspond to maximal submatrices filled with 1’s. Alternatively,
formal concepts may be understood as concepts in the traditional sense—as enti-
ties consisting of a set A of objects and a set B of attributes to which the concept
applies (e.g., concept dog applies to objects poodle, foxhound, . . . and attributes
barks, has limbs, . . . ). Formal concepts are partially ordered by the subconcept-
superconcept hierarchy. The resulting partially ordered set of formal concepts
(the so-called concept lattice) represents a hierarchical structure of all naturally
interpretable clusters (concepts) existing in the data (e.g., concept mammal is
more general a concept than dog). Applications of FCA in exploratory data
analysis can be found in [6,8]; [8] provides theoretical foundations.

In practice, more often than not, attributes are graded (fuzzy) rather than
bivalent. That is, an attribute applies to an object to a certain degree which
may be represented, e.g., by a number from the unit interval [0, 1]. The data ta-
ble is then a [0, 1]-valued matrix, with table entries corresponding to degrees to
which attributes apply to objects. There have been several approaches to FCA
in a graded setting. The most relevant approach was independently developed
in [1,2,4] and [19]. Up to now, not much attention has been paid to computa-
tional aspects of FCA with graded attributes. As an exception, in [3] the author
presents an algorithm for determining formal concepts present in data table with
graded attributes.

The aim of this paper is to propose another algorithm for generating all for-
mal concepts (which can be seen again as certain maximal submatrices). Unlike
the algorithm presented in [3], our algorithm enables us to generate all formal
concepts together with their subconcept-superconcept hierarchy. The absence of
conceptual hierarchy is not crucial if, for instance, the output of FCA is used for
preprocessing (e.g., for mining non-redundant association rules, see [21]). On the
other hand, if we want to present the output of analysis directly to users, it is
more convenient to depict the clusters in a hierarchy which models the natural
subconcept-superconcept ordering. Thus, from the point of view of applications,
it is important to have an efficient algorithm which generates the hierarchy along
with the clusters present in data table with graded attributes.

The paper is organized as follows. In Section 2, we present preliminaries from
classical formal concept analysis, fuzzy sets, and formal concept analysis of data
with graded attributes. In Section 3, we present the algorithm and prove its cor-
rectness. Section 4 contains experiments and comparisons of the new algorithm
with that from [3].

2 Preliminaries

This section provides basic notions of FCA and fuzzy logic. More details can be
found in [6,8,20] (formal concept analysis) and in [1,9,12,16] (fuzzy logic).

2.1 Formal Concept Analysis

Let X and Y be nonempty sets (of objects and attributes, respectively), let
I ⊆ X ×Y be a binary relation between X and Y . The triplet 〈X, Y, I〉 is called
a formal context, the fact 〈x, y〉 ∈ I is interpreted as “x has y” (“y applies
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to x”). A formal context corresponds to a binary data table with rows and
columns corresponding to objects and attributes, respectively, such that the
entry corresponding to objects x and attribute y is 1 if 〈x, y〉 ∈ I and 0 if
〈x, y〉 �∈ I. For A ⊆ X and B ⊆ Y we define sets A↑ ⊆ Y and B↓ ⊆ X by

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I}, (1)

B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}. (2)

Therefore, A↑ is the set of all attributes common to all objects from A and
B↓ is the set of all objects common to all attributes from B. According to the
traditional understanding, a pair 〈A, B〉 where A ⊆ X (so-called extent) and
B ⊆ Y (so-called intent) is called a formal concept of 〈X, Y, I〉 iff A↑ = B
and B↓ = A. Thus, 〈A, B〉 is a formal concept of 〈X, Y, I〉 iff A is the set of
all objects sharing all the attributes of B and, conversely, B is the set of all
attributes common to all objects from A. Alternatively, formal concepts may be
understood as maximal rectangles of the data matrix which are filled with 1’s:
〈A, B〉 is a formal concept of 〈X, Y, I〉 iff it is a maximal rectangle filled with 1’s
which is contained in I (i.e., a maximal submatrix of 〈X, Y, I〉 filled with 1’s).

The set B(X, Y, I) = {〈A, B〉 |A↑ = B, B↓ = A} is called the concept lattice
induced by the input data 〈X, Y, I〉. Moreover, B(X, Y, I) can be equipped by a
partial order relation ≤ defined by 〈A, B〉 ≤ 〈C, D〉 iff A ⊆ C (or, equivalently,
B ⊇ D). The partial order ≤ which is, in fact, a complete lattice order, models
the subconcept-superconcept hierarchy: 〈A, B〉 ≤ 〈C, D〉 means that the concept
〈C, D〉 is more general than 〈A, B〉 (covers more objects, or, equivalently, less
attributes).

2.2 Fuzzy Sets and Fuzzy Relations

A fuzzy set A in a universe set X [22] is a mapping assigning to each x ∈ X a
truth degree A(x) ∈ L where L is some partially ordered set of truth degrees
containing at least 0 (full falsity) and 1 (full truth). Usually, L is the unit interval
[0, 1] or a suitable subset of [0, 1]. A(x) is interpreted as the degree to which x
belongs to A. The notion of a fuzzy set enables us to model vaguely (nonsharply)
delineated collections: For instance, the collection described linguistically as “tall
men” can be modeled by a fuzzy set to which men with heights 150, 180, and
200 cm belong to degrees 0, 0.7, and 1, respectively.

In order to be able to develop the basic calculus with fuzzy sets and fuzzy rela-
tions, the set L of truth degrees needs to be equipped by suitable operations gen-
eralizing logical connectives of classical (two-valued) logic. Particularly, we will
need fuzzy conjunction ⊗ and fuzzy implication →. In the literature, there have
been proposed several fuzzy conjunctions and fuzzy implications [16]. A general
class of logical connectives is captured by the notion of a complete residuated lat-
tice [1,10,14]: A complete residuated lattice is a structure L = 〈L,∧,∨,⊗,→, 0, 1〉
such that (1) 〈L,∧,∨, 0, 1〉 is a complete lattice (with the least element 0, great-
est element 1), i.e. a partially ordered set in which arbitrary infima (

∧
) and

suprema (
∨

) exist; (2) 〈L,⊗, 1〉 is a commutative monoid, i.e. ⊗ is a binary
operation which is commutative, associative, and x ⊗ 1 = x (x ∈ L); (3) ⊗,→
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satisfy x⊗y ≤ z iff x ≤ y → z. Operations ⊗ (multiplication) and → (residuum)
play the role of a fuzzy conjunction and a fuzzy implication, respectively. The
class of complete residuated lattices includes structures defined on the real unit
interval with ∧ and ∨ being minimum and maximum, respectively, ⊗ being left-
continuous t-norm, and → being its residuum, see [1,9,12,15] for details.

In what follows, L always refers to a complete residuated lattice and ≤ denotes
the induced lattice order (i.e., a ≤ b iff a ∧ b = a iff a ∨ b = b iff a → b = 1).
We write a < b to denote that a ≤ b and a �= b. Given L, a fuzzy set with
truth degrees from L (called also an L-set) is a mapping A : X → L assigning
to any x ∈ X a truth degree A(x) ∈ L to which x belongs to A. Similarly, a
binary fuzzy relation R with truth degrees from L is a mapping R : X × Y → L
assigning to any x ∈ X and y ∈ Y a truth degree R(x, y) ∈ L to which x and
y are related under R. The set of all L-sets in a universe X is denoted LX . For
a fuzzy set A ∈ LX and a truth degree a ∈ L we denote by a/A the a-cut of
A, i.e. a/A = {x ∈ X |A(x) ≥ a} (the ordinary set of elements from X which
belong to A to degree at least a). A fuzzy set A ∈ LX is called crisp if, for each
x ∈ X , A(x) ∈ {0, 1}. Following common usage we will identify crisp fuzzy sets
in X with (characteristic functions of) ordinary subsets of X . In particular, by
∅ and X we denote crisp fuzzy sets ∅ ∈ LX and X ∈ LX such that ∅(x) = 0 and
X(x) = 1 for each x ∈ X . For fuzzy sets A, B ∈ LX we put A ⊆ B (A is a subset
of B) if for each x ∈ X we have A(x) ≤ B(x), in which case we say that A is
(fully) contained in B. If for A, B ∈ LX we have A ⊆ B and there is x ∈ X such
that A(x) < B(x), we write A ⊂ B and say that A is strictly contained in B.

2.3 Fuzzy Attributes, Fuzzy Contexts, and Formal Concepts

When dealing with real-world situations, it is very often the case that attributes
that we observe on the objects of interest are fuzzy rather than bivalent. In
general, an attribute y applies to an object x to some degree I(x, y) ∈ L not
necessarily being equal to 0 or 1. The larger I(x, y), the more y applies to x.
From the point of view of FCA, the input data table, which is no longer a binary
one, is represented by a triplet 〈X, Y, I〉 (called a formal fuzzy context) where
I ∈ LX×Y , i.e. I is a fuzzy relation between X and Y .

The agenda of formal concept analysis of data with fuzzy attributes [1,4,19]
is the following. For fuzzy sets A ∈ LX (i.e., A is a fuzzy set of objects) and
B ∈ LY (i.e., B is a fuzzy set of attributes), consider fuzzy sets A↑ ∈ LY (fuzzy
set of attributes) and B↓ ∈ LX (fuzzy set of objects) defined by

A↑(y) =
∧

x∈X(A(x) → I(x, y)), (3)

B↓(x) =
∧

y∈Y (B(y) → I(x, y)). (4)

Using basic rules of fuzzy logic, one can see that A↑(y) is the truth degree of
“y is shared by all objects from A” and B↓(x) is the truth degree of “x has
all attributes from B”, i.e. (3) and (4) properly generalize (1) and (2). Each
〈A, B〉 ∈ LX × LY such that A↑ = B and B↓ = A is called a formal fuzzy
concept of 〈X, Y, I〉. The set of all formal fuzzy concepts of 〈X, Y, I〉 will be
denoted by B(X, Y, I). Both the extent A and intent B of a formal fuzzy concept
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〈A, B〉 ∈ B(X, Y, I) are fuzzy sets. This corresponds well to the intuition that
a concept may apply to objects and attributes to various intermediate degrees,
not necessarily to 0 and 1 only. For brevity, by Int(X, Y, I) we denote the set of
all intents of 〈X, Y, I〉, i.e. Int(X, Y, I) = {B ∈ LY | 〈A, B〉 ∈ B(X, Y, I) for some
A ∈ LX}. Analogously, Ext(X, Y, I) denotes the set of all extents of 〈X, Y, I〉.
The conceptual hierarchy in B(X, Y, I) is modeled by a relation ≤ defined on
B(X, Y, I) by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B1 ⊇ B2), (5)

where A1 ⊆ A2 means that A1 is fully contained in A2 for each x ∈ X (see
Section 2.2). The following theorem characterizes the structure of fuzzy concept
lattices.

Theorem 1 (see [4]). The set B(X, Y, I) is under ≤ a complete lattice where
the infima and suprema are given by

∧
j∈J 〈Aj , Bj〉 =

〈⋂
j∈J Aj , (

⋃
j∈J Bj)↓↑

〉
, (6)

∨
j∈J 〈Aj , Bj〉 =

〈
(
⋃

j∈J Aj)↑↓,
⋂

j∈J Bj

〉
. (7)

Moreover, an arbitrary complete lattice V = 〈V,∧,∨〉 is isomorphic to some
B(X, Y, I) iff there are mappings γ : X×L → V , μ : Y ×L → V such that γ(X, L)
is

∧
-dense in V; μ(Y, L) is

∨
-dense in V; a⊗b ≤ I(x, y) iff γ(x, a) ≤ μ(y, b). ��

If we take L with L = {0, 1}, i.e. there are only two truth degrees involved
(our structure of truth degrees is the two-valued Boolean algebra), all notions
introduced in Section 2.1 will become particular cases of notions presented in
this section. This is the way the fuzzy approach generalizes the classical one [8].

Remark 1. Formal fuzzy concepts can also be characterized as maximal rectan-
gles contained in I: For a pair 〈A, B〉 ∈ LX × LY (call it a rectangle), define a
fuzzy relation A⊗B ∈ LX×Y by (A⊗B)(x, y) = A(x) ⊗B(y). 〈A, B〉 is said to
be contained in I if A ⊗ B ⊆ I. Furthermore, put 〈A, B〉 � 〈A′, B′〉 iff A ⊆ A′

and B ⊆ B′. Then we have [1] that 〈A, B〉 is a formal fuzzy concept of 〈X, Y, I〉
iff it is a maximal (w.r.t. �) rectangle contained in I.

3 Computing Fuzzy Concepts and Conceptual Hierarchy

The best known algorithm for computing formal concepts is probably Ganter’s
NextIntent algorithm, see [7,8]. The original NextIntent generates in a lexi-
cal order all concepts present in a (classical/bivalent) context. Graded extension
of Ganter’s algorithm has been presented in [3]. In this section we develop an
algorithm for computing fuzzy concepts (along with their hierarchy) which is
inspired by the Lindig’s NextNeighbor algorithm [18].

Our goal is the following. Given an input data table represented by a formal
fuzzy context 〈X, Y, I〉, (i) generate all formal fuzzy concepts 〈A, B〉 of the fuzzy
concept lattice B(X, Y, I) and, at the same time; (ii) compute for each fuzzy con-
cept 〈A, B〉 a set of its direct subconcepts and direct superconcepts. The sets of
(direct) subconcepts/superconcepts fully determine the whole hierarchical struc-
ture of fuzzy concepts. Information about direct subconcepts and superconcepts
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is of crucial importance for applications. For instance, it allows us to navigate
users through the concepts, it is used as an input for geometrical method for
drawing concept lattices, and more (see [8] for other applications).

Each fuzzy concept 〈A, B〉 is uniquely given by each of its components: by
its extent A (since B = A↑) or by its intent B (since A = B↓). Therefore, in
order to generate all fuzzy concepts from B(X, Y, I), it is sufficient to generate all
intents from Int(X, Y, I) (or, equivalently, all extents). Moreover, B ∈ LY is an
intent from Int(X, Y, I) iff B = B↓↑, i.e. iff B is a fixed point of the fuzzy closure
operator ↓↑ : LY → LY which is a composition of operators ↓ and ↑ defined by (3)
and (4), see [1]. Thus, the task to compute all fuzzy concepts present in 〈X, Y, I〉
can be reduced to a task of computing all fixed points of a fuzzy closure operator
↓↑ : LY → LY . In what follows we forget about the operators ↓, ↑ for a while
and develop the algorithm so that it accepts a general fuzzy closure operator
C : LY → LY (i.e., C is extensive, monotone, and idempotent [1]) as its input,
and produces a set of its fixed points (with their hierarchy) as its output. The
set of all fixed points of C: LY → LY will be denoted by fix(C), i.e.

fix(C) = {B ∈ LY |B = C(B)} = {C(B) |B ∈ LY }. (8)

Note that due to computational reasons, we restrict ourselves to finite structures
of truth degrees, and always assume that X (set of objects) and Y (set of at-
tributes) are finite. This will ensure that the set of all fuzzy concepts extracted
from the data will be finite and thus enumerable in finitely many steps. For sim-
plicity, we describe only the case when L is linearly ordered (the case of general
finite L is technically more complicated and will be discussed in a full version of
this paper). In the rest of the paper C: LY → LY always denotes a fuzzy closure
operator.

For convenience, denote L = {a1, . . . , ak} so that a1 < a2 < · · · < ak. If i < k,
we write a+

i instead of ai+1. Upper neighbors can be introduced as follows:
D ∈ fix(C) is called an upper neighbor of B ∈ fix(C) (w.r.t. C), written B ≺C D,
if (i) B ⊂ D, and (ii) there is no D′ ∈ fix(C) such that B ⊂ D′ ⊂ D.

Lower neighbors can be defined dually. Note that if C is ↓↑, then upper neigh-
bors of an intent B with respect to ↓↑ are exactly the intents of the direct sub-
concepts of 〈B↓, B〉. One should not be mislead here: even if the upper neighbors
of B are intents which are greater than B, they determine subconcepts due to
the fact that greater fuzzy sets of attributes are shared by smaller fuzzy sets of
objects, see the definition of conceptual hierarchy (5).

For each B ∈ LY and y ∈ Y such that B(y) < 1, let C
(
B ∪ {B(y)+/y})

be abbreviated by [y]CB. From now on, if we write [y]CB we tacitly assume that
B(y) < 1. If [y]CB is an upper neighbor of B w.r.t. C, then [y]CB will be called
an upper neighbor generated by y; y is called a generator of [y]CB. For technical
reasons, we assume Y = {y1, . . . , yn} and consider a fixed order of attributes
from Y given by the indices, i.e. yi < yj iff i < j. In the sequel, we write just
i < j to denote yi < yj . The following assertion says that each upper neighbor
is in fact an upper neighbor generated by some y. In addition the generator y
can be chosen so that it is the greatest generator with respect to the ordering of
attributes.



162 R. Belohlavek et al.

Lemma 1. The following are true for any fuzzy closure operator C: LY → LY .

(i) For each B ∈ LY and y ∈ Y such that B(y) < 1, we have B(y) < ([y]CB)(y).
(ii) Let B, D ∈ fix(C) such that B ⊂ D and put

i = max{j |B(yj) < D(yj)}. (9)

Then, for each k > i, D(yk) = B(yk). Moreover, if B ≺C D then D = [yi]CB.

Proof. (i) is obvious. In order to prove (ii), let B, D ∈ fix(C) such that B ⊂ D.
Clearly, {j |B(yj) < D(yj)} is a nonempty finite set, i.e. it has a maximum.
Denote the maximum by i as in (9). Take any k > i. Since B ⊂ D and i is the
maximum of all indices such that B(yj) < D(yj), we get B(yk) = D(yk). Suppose
we have B ≺C D. From B(yi) < B(yi)+ ≤ D(yi), we get B ∪ {B(yi)

+
/yi} ⊆ D,

which further gives [yi]CB = C
(
B∪{B(yi)

+
/yi}

) ⊆ C(D) = D because D is a fixed
point of C. Furthermore, from B ⊂ [yi]CB ⊆ D it follows that [yi]CB = D because
[yi]CB ∈ fix(C) and D was supposed to be an upper neighbor of B. ��
Indices defined by (9) will play an important role. Therefore, we will introduce
the following notation. For C: LY → LY , B, D ∈ fix(C) such that B ⊂ D, and i
given by (9), we denote yi ∈ Y by yC

B(D). Furthermore, we put

MC
B = {y ∈ Y |B ≺C [y]CB and y = yC

B([y]CB)}. (10)

Note that yC
B and, consequently, MC

B depend on the chosen ordering of at-
tributes. Since the ordering is fixed, we will not mention it explicitly. Regardless
of the ordering, we have that {[y]CB | y ∈ MC

B} is a set of all upper neighbors
of B w.r.t. C. Moreover, the attributes from MC

B uniquely correspond to the
upper neighbors from {[y]CB | y ∈ MC

B}. This follows directly from (10) and from
Lemma 1 (ii). Hence, in order to compute the upper neighbors it suffices to de-
termine MC

B. The following assertions provides us with a quick test of presence
of an attribute in MC

B.

Theorem 2. Let B ∈ fix(C) and yi ∈ Y such that yi = yC
B([yi]CB). Then we have

yi ∈ MC
B iff for each yk ∈ MC

B such that k < i we have ([yi]CB)(yk) = B(yk).

Proof. Take B ∈ fix(C) and let yi ∈ Y such that yi = yC
B([yi]CB). Hence, from (9)

it follows that ([yi]CB)(yi) > B(yi) and ([yi]CB)(yk) = B(yk) (k > i).
“⇒”: Let yi ∈ MC

B, i.e. B ≺C [yi]CB . Take any yk ∈ MC
B such that k < i.

Suppose, by contradiction, that ([yi]CB)(yk) > B(yk). Since we have

B(yk) < B(yk)+ ≤ ([yi]CB)(yk),

we get B ∪ {B(yk)+/yk} ⊆ [yi]CB, i.e.

B ⊂ [yk]CB = C
(
B ∪ {B(yk)+/yk}

) ⊆ C
(
[yi]CB

)
= [yi]CB. (11)

Since B ≺C [yi]CB, (11) yields [yk]CB = [yi]CB . From yk = yC
B([yk]CB) and k < i

is follows that ([yk]CB)(yi) = B(yi), which is a contradiction to ([yk]CB)(yi) =
([yi]CB)(yi) > B(yi). Therefore, ([yi]CB)(yk) = B(yk).

“⇐”: Conversely, let ([yi]CB)(yk) = B(yk) be true for each yk ∈ MC
B such that

k < i. We prove that yi ∈ MC
B. In order to prove this claim, it suffices to check
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Algorithm 1. (Compute all upper neighbors of B w. r. t. C)

1 procedure Neighbors (B, C):
2 U := ∅
3 Min := {y ∈ Y |B(y) < 1}
4 for each y ∈ Y such that B(y) < 1:
5 D := [y]CB
6 Increased := {z ∈ Y | z �= y and B(z) < D(z)}
7 if Min ∩ Increased = ∅:
8 add D to U
9 else:

10 remove y from Min
11 return U

that no [y]CB where yi �= y ∈ MC
B is contained in [yi]CB because this will give

B ≺C [yi]CB from which the claim follows immediately. Thus, take yi �= y ∈ MC
B.

If y = yk where k < i then, by assumption, ([yi]CB)(yk) = B(yk) which directly
gives that [yk]CB cannot be contained in [yi]CB because ([yk]CB)(yk) > B(yk) =
([yi]CB)(yk). If i < k, we have ([yi]CB)(yk) = B(yk) on account of yC

B([yi]CB) = yi.
Hence, again, [yk]CB cannot be contained in [yi]CB which proves yi ∈ MC

B. ��
Theorem 2 leads to Algorithm 1 for computing all upper neighbors. The algo-
rithm accepts C : LY → LY and B ∈ fix(C) as its input and produces a set of
all upper neighbors of B w.r.t C.

Theorem 3. Algorithm 1 is correct.
Proof. The algorithm uses the following variables: U is a set of upper neighbors
which is initially empty; Min is an ordinary set of attributes which should be
understood as a set of possible generators of upper neighbors. The roles of U and
Min are the following. The set Min is initially set to {y ∈ Y |B(y) < 1} and at
the end of computation, we will have Min = MC

B, i.e. Min will be a collection
of generators of upper neighbors which is built by removing attributes which do
not belong to (10), the ordering of attributes (see comments before Lemma 1) is
given by the order in which the loop between lines 4–10 processes the attributes.
As we can see from lines 5, 8 and 10, y is left in Min iff D = [y]CB is added to
U . The important part of the algorithm is the test present at line 7. It can be
seen that Min ∩ Increased = ∅ happens iff yC

B(D) = y and for each yk ∈ Min
that has already been processed (i.e., k < i), we have D(yk) = B(yk). Thus,
Theorem 2 gives that test at line 7 is successful iff D is an upper neighbor of B
such that y ∈ MC

B. Hence, y can be left in Min and D is added to U which is
exactly what happens between lines 7–10. By induction, we can prove that at
the end of computation, Min = MC

B and U = {[y]CB | y ∈ MC
B}. The full proof is

omitted due to the limited scope of this paper. ��
Example 1. For illustration, take L = 〈{0, 0.5, 1}, min, max,⊗,→, 0, 1〉 with ⊗
and → being �Lukasiewicz operations. Consider a fuzzy context from Fig. 1 (left)
and an induced closure operator C being ↓↑. Let B = {0.5/c,0.5/d, e}. When
Neighbors (B, C) is invoked, the procedure goes as follows. First, Min is set to
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Algorithm 2. (Compute all fixed points of C and their hierarchy)

1 procedure GenerateFrom (B):
2 while B �= Y :
3 B∗ := Neighbors (B,C)
4 N := B∗ − F
5 for each D ∈ B∗:
6 add B to D∗
7 if D ∈ N :
8 add D to F
9 for each D ∈ N :

10 call GenerateFrom (D)

11 procedure Lattice (C, Y ):
12 F := ∅
13 B := C(∅)
14 add B to F
15 call GenerateFrom (B)
16 return 〈F , {B∗|B ∈ F}, {B∗|B ∈ F}〉

{a, b, c, d}. Then, a ∈ Y is processed. We get D = [a]CB = {0.5/a,0.5/b,0.5/c, d, e}
and Increased = {b, d}, i.e. a is removed from Min . We continue with b ∈ Y for
which D = {0.5/a,0.5/b,0.5/c, d, e} and Increased = {a, d}. Thus, b is also removed
from Min . Notice that a, b were removed from Min although both the attributes
are generators of the upper neighbor D of B. This is correct because neither of
them equals yC

B(D). In the next step, we process c ∈ Y : D = {0.5/a,0.5/b, c, d, e}
and Increased = {a, b, d}. Again, c is removed from Min only this time, c is not
even a generator of an upper neighbor of B. Finally, we process d ∈ Y in which
case D = {0.5/a,0.5/b,0.5/c, d, e} and Increased = {a, b}. Since Min = {d}, we add
D to U . Then U is returned as the result of calling Neighbors (B, C).

Now, the algorithm for computing all fixed points can be described as follows. We
start with the least fixed point of C which is C(∅) and add it to the collection of
found fixed points. For each newly found fixed point we first use Neighbors from
Algorithm 1 to compute its upper neighbors and then we update the information
about lower neighbors (D is an upper neighbor of B iff B is a lower neighbor
of D). For each upper neighbor which has not been found in previous steps, we
recursively repeat the process until we arrive to Y (greatest fixed point of C).
The whole procedure is summarized in Algorithm 2.

Algorithm 2 consists of two procedures: Lattice accepts a closure operator
C : LY → LY and Y as its input and initiates the recursive generation of fixed
points starting with the least one. The auxiliary procedure GenerateFrom
does the actual job of generating fixed points. Both the procedures use the
following variables: F is a collection of found fixed points, for each B ∈ F we
denote by B∗ the set of all upper neighbors of B, and by B∗ we denote the set of
all lower neighbors of B. Variable N is local in GenerateFrom and represents
fixed points that were newly found during a particular call of GenerateFrom.

Theorem 4. Algorithm 2 is correct.

Proof. Due to the limited scope of the paper, we present only a sketch of the
proof (full proof will be presented in the full version of the paper). The crucial
observation is that each fixed point of C is in GenerateFrom processed only
once. This in ensured at line 10, where GenerateFrom is called only for fixed
points that have not been found so far (see definition of N at line 4). The
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a b c d e

x1 1 0.5 0.5 1 1

x2 1 1 1 1 0.5

x3 0 0 0.5 0.5 1

0

1 2

3 4 5

6 7

8

9

0

12

34

5

6

78

9

Fig. 1. Input data table and the hierarchy of conceptual clusters

information about lower neighbors (line 6) is also updated correctly because
each B (considered only once) is a lower neighbor only of the fixed points which
are upper neighbors of B. ��
Remark 2. (a) Consider the fuzzy context from Fig. 1 (left). The correspond-
ing structure of fuzzy concepts computed by Algorithm 2 is depicted in Fig. 1
(middle). The numbers in nodes indicate the order in which the intents deter-
mining the nodes are computed. Formal concepts corresponding to the nodes of
diagram in Fig. 1 (middle) are the following:

C0 : 〈{x1, x2, x3},{.5/c, .5/d, .5/e}〉, C1 : 〈{x1, x2,
.5/x3},{.5/a, .5/b, .5/c, d, .5/e}〉,

C2 : 〈{x1,
.5/x2, x3},{.5/c, .5/d, e}〉, C3 : 〈{x1, x2}, {a, .5/b, .5/c, d, .5/e}〉,

C4 : 〈{.5/x1, x2,
.5/x3},{.5/a, .5/b, c, d, .5/e}〉, C5 : 〈{x1,

.5/x2,
.5/x3},{.5/a, .5/b, .5/c, d, e}〉,

C6 : 〈{.5/x1, x2}, {a, b, c, d, .5/e}〉, C7 : 〈{x1,
.5/x2}, {a, .5/b, .5/c, d, e}〉,

C8 : 〈{.5/x1,
.5/x2}, {a, b, c, d, e}〉, C9 : 〈{.5/x1,

.5/x2,
.5/x3},{.5/a, .5/b, c, d, e}〉.

Note that the order in which Algorithm 2 computes the intents (of concepts)
differs from the order in which the intents are computed using the algorithm
from [3]. The order in which the intents are computed in case of algorithm
from [3] is depicted in Fig. 1 (right).

(b) Both the algorithms introduced in this section use a general fuzzy closure
operator C instead of a fixed operator ↓↑ induced by a data table. The approach
via arbitrary C is more general. More importantly, general closure operators
play an important role for constraining the output of concept analysis, see [5],
for which Algorithm 2 can also be used.

4 Comparison with Other Algorithms and Experiments

Algorithm 2 for computing fixed points of closure operators together with their
hierarchy has the same asymptotic complexity as the algorithm proposed in [3].
Taking into account graded attributes, the latter claim can be proved in an
analogous way as in [18]. Due to the limited scope of the paper, we omit the proof
and, instead, we turn our attention to the practical performance of Algorithm 2
compared to the algorithm from [3].
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Fig. 2. Running time of algorithms for L with 5 degrees

The efficiency of the implementation of Algorithm 2 depends of the chosen
data structures. The representation of F (and, consequently, B∗ and B∗ which
are likely to be stored along with B) seems to be critical because the elements
in F are frequently accessed (see line 4 of Algorithm 2). To avoid the linear
time complexity of accessing elements of F , we have organized F (i) as a search
tree (analogously as in [18]) and (ii) by a dynamic hash table. Moreover, the
sets Min and Increased in Algorithm 1 can be represented by bit arrays which
significantly increases the performance (condition at line 7 of Algorithm 1 can
be checked by applying the bitwise “and”).

We have run several performance tests to compare Algorithm 2 to the algo-
rithm from [3]. Since the algorithm from [3] does not compute the hierarchy of
concepts, we have included in our tests an extension of that algorithm which com-
putes the hierarchy after all the concepts are generated. Computing the complete
hierarchy has asymptotic time complexity O(n2), where n is the number of con-
cepts. The algorithms were implemented in ANSI C using the above-mentioned
data structures (hashing tables and bit arrays). All experiments were run on
otherwise idle Intel Pentium 4 (3.00 GHz CPU, 512 MB RAM).

To compare the performance of the algorithms we did series of experiments
with randomly generated data tables with fuzzy attributes. As structures of truth
degrees we used finite �Lukasiewicz chains of varying size. We were interested in
the dependency of running time of the algorithms on the number of generated
concepts given by fixed points of ↓↑. The results of one of the experiments are
depicted in Fig. 2. In this particular test we have used a five-element �Lukasiewicz
chain and we measured the average time needed for computing the concepts
and their hierarchy. In the graph, the dashed line with triangles represents the
average running time of the algorithm from [3], the dotted line with squares
represents the running time of the algorithm from [3] followed by the hierarchy
computation, and the solid line with circles corresponds to Algorithm 2.

We can see from the figure that the algorithm from [3] is the best of the three
ones if we want to compute the concepts only. If we are interested in generat-
ing the concepts along with their hierarchy, Algorithm 2 proposed in this paper
is considerably faster than the algorithm from [3] followed by the computation
of the hierarchy. Tests with larger data and/or structures of truth degrees have
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shown a similar tendency. These experimental results were expected and are in
accordance with results presented in [18] for binary data.
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