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Abstract. The paper presents theorems characterizing concept lattices
which happen to be trees after removing the bottom element. Concept
lattices are the clustering/classification systems provided as an output of
formal concept analysis. In general, a concept lattice may contain over-
lapping clusters and need not be a tree. On the other hand, tree-like
classification schemes are appealing and are produced by several classi-
fication methods as the output. This paper attempts to help establish
a bridge between concept lattices and tree-based classification methods.
We present results presenting conditions for input data which are suffi-
cient and necessary for the output concept lattice to form a tree after one
removes its bottom element. In addition, we present illustrative examples
and several remarks on related efforts and future research topics.

1 Introduction

Data tables describing objects and their attributes represent perhaps the most
common form of data. Among several methods for analysis of object-attribute
data, formal concept analysis (FCA) is becoming increasingly popular, see [7,4].
The main aim of FCA is to extract interesting clusters (called formal concepts)
from tabular data along with a partial order of these clusters (called conceptual
hierarchy). Formal concepts correspond to maximal rectangles in a data table
and are easily interpretable by users. FCA is basically being used two ways.
First, as a direct method of data analysis in which case the hierarchically ordered
collection of formal concepts extracted from data is presented to a user/expert
for further analysis, see e.g. [4] for such examples of FCA applications. Second,
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by grant No. 1ET101370417 of GA AV ČR, by grant No. 201/05/0079 of the Czech
Science Foundation, and by institutional support, research plan MSM 6198959214.

V. Torra, Y. Narukawa, and Y. Yoshida (Eds.): MDAI 2007, LNAI 4617, pp. 174–184, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Trees in Concept Lattices 175

as a data preprocessing method in which case the extracted clusters are used
for further processing, see e.g. [13] for applications of FCA in association rules
mining.

Unlike several other clustering and classification techniques [1,5], which yield
clustering and classification trees, FCA yields diagrams of hierarchically ordered
clusters which are richer than trees. Namely, the diagrams are lattices and are
called called concept lattices. A practical difference is that concept lattices usu-
ally contain overlapping clusters. Another difference is that the clusters in FCA
are based on sharing of attributes rather than distance. FCA can thus be thought
of as a new method of clustering and classification which is substantially differ-
ent from conventional methods. Although FCA has been justified by many real-
world applications already, see e.g. [4], the following quote from John Hartigan,
a leading expert in clustering and classification, is relevant [1,5]:

“My second remark is about future focus. We pay too much attention to
the details of the algorithms. . . . It is more important to think about the
purposes of clustering, about the types of clusters we wish to construct,
. . . These details are interesting, . . . , but we have plenty of algorithms
already. . . . what kinds of families of classes should we be looking for?
At present, we think of partitions, trees, sometimes overlapping clusters;
these structures are a faint echo of the rich classifications available in
everyday language. . . .We must seek sufficiently rich class of structures
. . . ”

The present paper seeks to contribute to the problem of establishing relation-
ships between FCA and other methods of clustering and classification. Needless
to say, this goal requires a long-term effort. In this paper we consider a partic-
ular problem. Namely, we present conditions for input data which are sufficient
and necessary for the output concept lattice to form a tree after removing its
bottom element. In addition, we present illustrative examples and several re-
marks on related efforts and future research topics. Note that a related problem,
namely, of selecting a tree from a concept lattice by means of constraints using
attribute-dependency formulas, was considered in [2].

Section 2 presents preliminaries. Section 3 presents the main results, illustra-
tive examples, and remarks. Section 4 presents conclusions and an outline of
future research.

2 Preliminaries

In this section, we summarize basic notions of formal concept analysis (FCA). An
object-attribute data table describing which objects have which attributes can
be identified with a triplet 〈X, Y, I〉 where X is a non-empty set (of objects), Y is
a non-empty set (of attributes), and I ⊆ X ×Y is an (object-attribute) relation.
In FCA, 〈X, Y, I〉 is called a formal context. Objects and attributes correspond
to table rows and columns, respectively, and 〈x, y〉 ∈ I indicates that object x
has attribute y (table entry corresponding to row x and column y contains × or
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1; if 〈x, y〉 �∈ I the table entry contains blank symbol or 0). For each A ⊆ X and
B ⊆ Y denote by A↑ a subset of Y and by B↓ a subset of X defined by

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I}, (1)
B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}. (2)

Described verbally, A↑ is the set of all attributes from Y shared by all objects
from A and B↓ is the set of all objects from X sharing all attributes from B.
A formal concept in 〈X, Y, I〉 is a pair 〈A, B〉 of A ⊆ X and B ⊆ Y satisfying
A↑ = B and B↓ = A. That is, a formal concept consists of a set A (so-called
extent) of objects which fall under the concept and a set B (so-called intent)
of attributes which fall under the concept such that A is the set of all objects
sharing all attributes from B and, conversely, B is the collection of all attributes
from Y shared by all objects from A. Alternatively, formal concepts can be
defined as maximal rectangles (submatrices) of 〈X, Y, I〉 which are full of ×’s:
For A ⊆ X and B ⊆ Y , 〈A, B〉 is a formal concept in 〈X, Y, I〉 iff A×B ⊆ I and
there is no A′ ⊃ A or B′ ⊃ B such that A′ × B ⊆ I or A × B′ ⊆ I.

A set B(X, Y, I) = {〈A, B〉 |A↑ = B, B↓ = A} of all formal concepts in data
〈X, Y, I〉 can be equipped with a partial order ≤ (modeling the subconcept-
superconcept hierarchy, e.g. dog ≤ mammal) defined by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1). (3)

Under ≤, B(X, Y, I) happens to be a complete lattice, called a concept lattice of
〈X, Y, I〉, the basic structure of which is described by a so-called main theorem
of concept lattices [7]:

Theorem 1 (Main Theorem of Concept Lattices). (1) The set B(X, Y, I)
is under ≤ a complete lattice where the infima and suprema are given by

∧
j∈J 〈Aj , Bj〉 =

〈⋂
j∈J Aj , (

⋃
j∈J Bj)↓↑

〉
, (4)

∨
j∈J 〈Aj , Bj〉 =

〈
(
⋃

j∈J Aj)↑↓,
⋂

j∈J Bj

〉
. (5)

(2) Moreover, an arbitrary complete lattice V = 〈V,≤〉 is isomorphic to
B(X, Y, I) iff there are mappings γ : X → V , μ : Y → V such that

(i) γ(X) is
∨

-dense in V , μ(Y ) is
∧

-dense in V ;
(ii) γ(x) ≤ μ(y) iff 〈x, y〉 ∈ I. 
�

Note that a subset K ⊆ V is
∨

-dense in V (
∧

-dense in V ) if for every v ∈ V
there is K ′ ⊆ K such that v =

∨
K ′ (v =

∧
K ′). Note also that operators ↑ and

↓ form a so-called Galois connection [7] and that B(X, Y, I) is in fact a set of all
fixed points of ↑ and ↓. That is, ↑ and ↓ satisfy the following conditions:

A ⊆ A↑↓, (6)
if A1 ⊆ A2 then A2

↑ ⊆ A1
↑, (7)

B ⊆ B↓↑, (8)
if B1 ⊆ B2 then B2

↓ ⊆ B1
↓, (9)

for each A, A1, A2 ⊆ X and B, B1, B2 ⊆ Y . Furthermore, the composed op-
erators ↑↓ : 2X → 2X and ↓↑ : 2Y → 2Y are closure operators in X and Y ,
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respectively. As a consequence, A ⊆ X is an extent of some concept in B(X, Y, I)
(i.e., there is B ⊆ Y such that 〈A, B〉 ∈ B(X, Y, I)) iff A = A↑↓, i.e. A is closed
under ↑↓. Analogously for intents.

Concept lattices are the primary output of formal concept analysis. There
is another output of FCA which is equally important, namely, so-called non-
redundant bases of attribute implications. An attribute implication is an expres-
sion A ⇒ B where A, B ⊆ Y with Y being the same set of attributes as above.
An attribute implication A ⇒ B is called true in M ⊆ Y , written M |= A ⇒ B,
if the following condition is satisfied:

if A ⊆ M then B ⊆ M.

If M ⊆ Y represents a set of attributes of some object x then M |= A ⇒ B has
the following meaning: “if x has all attributes from A, then x has all attributes
from B”. Thus, attribute implications are particular if-then rules describing
dependencies between attributes.

Given a formal context 〈X, Y, I〉, for each x ∈ X we define a set Ix of attributes
Ix = {y ∈ Y | 〈x, y〉 ∈ I}, i.e. Ix is the set of all attributes of object x in 〈X, Y, I〉.
Notice that Ix corresponds to a row in data table representing format context
〈X, Y, I〉. An attribute implication A ⇒ B is called true in 〈X, Y, I〉, written
I |= A ⇒ B, iff Ix |= A ⇒ B for each (x ∈ X). Hence, I |= A ⇒ B iff for each
object x ∈ X we have: if x has all attributes from A, then x has all attributes
from B.

The set of all attribute implications which are true in 〈X, Y, I〉 is, along with
the concept lattice B(X, Y, I), the basic output of FCA. Unfortunately, the set
of all attribute implications is usually too large and it cannot be presented
to users directly. Therefore, we use special indirect description of all attribute
implications being true in 〈X, Y, I〉. Namely, we select from all the attribute
implications in question a small subset from which the other implications follow.
This can be done using the following notions.

Let T be any set of attribute implications. A set M ⊆ Y of attributes is called
a model of T , if M |= A ⇒ B for each A ⇒ B ∈ T . The set of all models of T
will be denoted by Mod(T ), i.e.

Mod(T ) = {M ⊆ Y | for each A ⇒ B ∈ T : M |= A ⇒ B}. (10)

An attribute implication A ⇒ B follows from T (A ⇒ B is semantically entailed
by T ), written T |= A ⇒ B, if M |= A ⇒ B for each M ∈ Mod(T ). A set
T of attribute implications is called complete in 〈X, Y, I〉 if, for each attribute
implication A ⇒ B, we have

T |= A ⇒ B iff I |= A ⇒ B,

i.e., if the attribute implications which are entailed by T are exactly the attribute
implications which are true in 〈X, Y, I〉. Hence, if T is complete in 〈X, Y, I〉,
then T describes exactly the attribute implications which are true in 〈X, Y, I〉.
This is important especially if T is “reasonably small”. Therefore, we define
the following notion. A set T of attribute implications is a non-redundant basis
of 〈X, Y, I〉 if (i) T is complete in 〈X, Y, I〉 and (ii) no proper subset of T is
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complete in 〈X, Y, I〉. Alternatively, a non-redundant basis of 〈X, Y, I〉 can be
described as complete sets of attribute implications such that no implication in
the set is entailed by the other implications in that set. There have been proposed
algorithms to generate, given 〈X, Y, I〉, a non-redundant basis of 〈X, Y, I〉, see
e.g. [6,7,10].

For a detailed information on formal concept analysis and lattice theory we
refer to [4,7,8] where a reader can find theoretical foundations, methods and
algorithms, and applications in various areas.

3 Trees in Concept Lattices

In this section we will be interested in concept lattices corresponding to trees.
Trees are usually defined as undirected graphs which are acyclic and connected
[9]. Since we are going to identify trees in particular ordered sets, we deal with
trees as with ordered sets. In particular, a finite partially ordered set 〈U,≤〉 will
be called a tree if for each a, b ∈ U :

(i) there is a supremum of a and b in 〈U,≤〉, and
(ii) there is an infimum of a and b in 〈U,≤〉 iff a and b are comparable

(i.e., iff a ≤ b or b ≤ a).

Obviously, 〈U,≤〉 being a tree corresponds to the usual graph-theoretical rep-
resentation of a rooted tree. The root of 〈U,≤〉 is the supremum of all elements
from U (which exists in 〈U,≤〉 because U is finite). An element u ∈ U is a direct
descendant of w ∈ U iff u < w, and there is no v ∈ U such that u < v < w.

From Theorem 1 it follows that each concept lattice is a complete lattice.
Hence, the above-mentioned condition (i) is satisfied for each B(X, Y, I). On
the other hand, (ii) need not be satisfied. It is easily seen that (ii) is satisfied iff
B(X, Y, I) is linearly ordered. So, the whole concept lattice is a tree iff it is linear,
which is not a worthwhile observation because linear trees are a degenerate form
of trees and therefore not interesting. Because of the observation we have just
made, we turn our attention to trees which form important parts of concept
lattices. We focus mainly on trees which appear in B(X, Y, I) if we remove its
least element.

Since concept lattices are complete lattices, each concept lattice B(X, Y, I)
has both the greatest and least element. Namely, 〈X, X↑〉 is the greatest ele-
ment (concept of all objects) of B(X, Y, I) and 〈Y ↓, Y 〉 is the least one (concept
of objects sharing all attributes from Y ). If 〈X, Y, I〉 does not contain an at-
tribute shared by all objects (i.e., a table representing 〈X, Y, I〉 does not contain
a column full of ×’s), which is quite common if 〈X, Y, I〉 represents a real-world
data, then 〈X, X↑〉 equals 〈X, ∅〉. Analogously, there is no object sharing all the
attributes from Y (i.e., a table representing 〈X, Y, I〉 does not contain a row full
of ×’s), 〈Y ↓, Y 〉 becomes 〈∅, Y 〉.

In what follows we investigate under which conditions B(X, Y, I) becomes a
tree if we remove its least element.
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3.1 Formal Contexts Generating Trees

For brevity, let B(X, Y, I)−{〈Y ↓, Y 〉} be denoted by B�(X, Y, I). Note that if we
consider B�(X, Y, I), we assume that it is equipped with a partial order which
is a restriction of the partial order defined by (3) to elements of B�(X, Y, I).

The following assertion characterizes when B�(X, Y, I) is a tree in terms of
extents of formal concepts.

Theorem 2. Let 〈X, Y, I〉 be a formal context. Then B�(X, Y, I) is a tree iff,
for each concepts 〈A, B〉, 〈C, D〉 ∈ B(X, Y, I) at least one of the following is true:

(i) A ⊆ C or C ⊆ A,
(ii) A ∩ C ⊆ Y ↓.

Proof. Let B�(X, Y, I) be a tree. Take any concepts 〈A, B〉, 〈C, D〉 ∈ B(X, Y, I).
If (i) is satisfied for A and C, we are done. Hence, assume that (i) is not satisfied,
i.e. we have A � C and C � A. From the definition of ≤, see (3), it follows that
〈A, B〉 � 〈C, D〉 and 〈C, D〉 � 〈A, B〉, i.e. formal concepts 〈A, B〉 and 〈C, D〉
are incomparable. Therefore, both 〈A, B〉 and 〈C, D〉 are in B�(X, Y, I). Since
B�(X, Y, I) is supposed to be a tree, infimum of 〈A, B〉 and 〈C, D〉 does not exist
in B�(X, Y, I). It means that the infimum of 〈A, B〉 and 〈C, D〉 in B(X, Y, I) is
〈Y ↓, Y 〉 because B�(X, Y, I) results from B(X, Y, I) by removing 〈Y ↓, Y 〉 and
B(X, Y, I) is a complete lattice. Using (4), we get that Y ↓ = A∩C, showing (ii).

Conversely, let (i) and (ii) be satisfied for any 〈A, B〉, 〈C, D〉 ∈ B(X, Y, I). Take
〈A, B〉, 〈C, D〉 ∈ B�(X, Y, I) such that 〈A, B〉 and 〈C, D〉 are incomparable. Such
〈A, B〉 and 〈C, D〉 cannot satisfy (i), i.e. we have A∩C ⊆ Y ↓. Hence, using (4),
the infimum of 〈A, B〉 and 〈C, D〉 in B(X, Y, I) is the least element of B(X, Y, I).
As a consequence, 〈A, B〉 and 〈C, D〉 does not have an infimum in B�(X, Y, I)
which proves that B�(X, Y, I) is a tree. 
�
Theorem 2 can also be formulated in terms of intents of formal concepts:

Corollary 1. B�(X, Y, I) is a tree iff, for each 〈A, B〉, 〈C, D〉 ∈ B(X, Y, I) we
either have (i) B ⊆ D or D ⊆ B, or (ii) (B ∪ D)↓ ⊆ Y ↓. 
�

Remark 1. If 〈Y ↓, Y 〉 is equal to 〈∅, Y 〉, i.e. if the table representing 〈Y ↓, Y 〉
does not contain a row full of ×’s (or 1’s), then (iii) in Theorem 2 simplifies to
A ∩ C = ∅, i.e. A and C are required to be disjoint.

Example 1. Consider a set of objects X = {1, 2, . . . , 14} (objects are denoted
by numbers) and a set of attributes Y = {g, h, . . . , z}. If we consider a formal
context 〈X, Y, I〉 which is represented by the data table in Fig. 1 (left) then the
corresponding B�(X, Y, I), which is depicted in Fig. 1 (right), is a tree. The root
of the tree represents concept 〈X, ∅〉. The other nodes are numbered and the
intents of the corresponding concepts are the following:

1 : {i, r}, 5: {m, s, z}, 9: {g, m, n, q, s, v, z},
2: {i, o, r}, 6: {g, m, n, s, v, z}, 10: {m, s, x, z},
3: {i, l, o, r}, 7: {g, j, m, n, p, s, t, v, z}, 11: {h, m, s, x, z},
4: {i, r, w}, 8: {g, j, k, m, n, p, s, t, u, v, z}, 12: {m, s, y, z}.
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g h i j k l mn o p q r s t u v w x y z
1. 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1
2. 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
3. 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
4. 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1
5. 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 0 0 1
6. 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1
7. 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1
8. 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
9. 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1

10. 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
11. 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1
12. 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
13. 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1
14. 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

∅

1

2

3

4

5

6

7

8

9

10

11

12

i, r

o

l

w

m, s, z

g, n, v

j, p, t

k, u

q

x

h

y

Fig. 1. Formal context generating a tree

If two nodes are connected by an edge, the lower concept has a strictly greater
intent. Using this observation, we can decorate edges of the tree by attributes
being added to intents of lower concepts as it is shown in Fig. 1 (right). On can
check that all the intents from B(X, Y, I) satisfy condition of Theorem 1.

Now, an important question is, if we can check that B�(X, Y, I) is a tree
directly from the context 〈X, Y, I〉, i.e. without computing the set of all concepts
first. We shall show that this is indeed possible. We will take advantage of the
following notion.

Definition 1. Let 〈X, Y, I〉 be a formal context. We say that 〈X, Y, I〉 generates
a tree if B�(X, Y, I) is a tree.

Recall that due to (2), {y}↓ is a set of all objects sharing the attribute y. That
is, {y}↓ naturally corresponds to a column in data table representing 〈X, Y, I〉.
Such “columns” will play an important role in the following theorem which
characterizes contexts generating trees.

Theorem 3. Let 〈X, Y, I〉 be a formal context. Then 〈X, Y, I〉 generates a tree
iff, for any attributes y1, y2 ∈ Y , at least one of the following conditions is true:

(i) {y1}↓ ⊆ {y2}↓,
(ii) {y2}↓ ⊆ {y1}↓,
(iii) {y1}↓ ∩ {y2}↓ ⊆ Y ↓.

Proof. Assume that 〈X, Y, I〉 generates a tree, i.e. B�(X, Y, I) is a tree. Each pair
of the form 〈{y}↓, {y}↓↑〉 is a formal concept from B(X, Y, I), see [7]. Therefore,
Theorem 2 yields that the above conditions (i)–(iii), being particular instances
of (i) and (ii) from Theorem 2, are satisfied.

Conversely, suppose that 〈X, Y, I〉 does not generate a tree. Thus, there are
some incomparable formal concepts 〈A1, B1〉, 〈A2, B2〉 ∈ B(X, Y, I) whose infi-
mum is not equal to the least element of B(X, Y, I). That is, for 〈A1, B1〉 and
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〈A2, B2〉 we have A1 � A2, A2 � A1, and A1 ∩ A2 � Y ↓. Note that as a con-
sequence we get that B1 � B2 and B2 � B1. We now show that we can pick
from B1 and B2 two attributes violating the above conditions (i)–(iii). Since
B1 � B2, there is y1 ∈ B1 such that y1 �∈ B2. Analogously, there is y2 ∈ B2

such that y2 �∈ B1 because B2 � B1. For y1 and y2 we can show that (i) is not
satisfied. Indeed, from y1 ∈ B1 = A1

↑ and (9) it follows that

A1 ⊆ {y1}↓. (11)

Moreover, y2 �∈ B1 = A1
↑ gives that there is x ∈ A1 such that 〈x, y2〉 �∈ I. Hence,

there is x ∈ A1 such that x �∈ {y2}↓, i.e. we get

A1 � {y2}↓. (12)

As an immediate consequence of (11) and (12) we get that {y1}↓ � {y2}↓, i.e.
condition (i) is violated. In a symmetric way (i.e., with y1 and y2 interchanged),
we can also show that (ii) is violated. So, now it remains to show that (iii) cannot
be satisfied. But this is now easy to see. From y1 ∈ B1, y2 ∈ B2, and (9) we get
A1 = B1

↓ ⊆ {y1}↓ and A2 = B2
↓ ⊆ {y2}↓ which yield A1 ∩ A2 ⊆ {y1}↓ ∩ {y2}↓.

Therefore, from A1 ∩ A2 � Y ↓ it follows that {y1}↓ ∩ {y2}↓ � Y ↓, showing that
(iii) is not satisfied. Altogether, we have shown that if 〈X, Y, I〉 does not generate
a tree, then there are y1, y2 ∈ Y such that neither of (i)–(iii) is satisfied. 
�
Remark 2. Conditions (i)–(iii) from Theorem 3 say that, roughly speaking, for
each two columns of a data table, either one of the columns is contained in the
other, or the columns have in common only attributes shared by all objects.
In particular, if no row of the data table contains all ×’s (or 1’s), the latter
condition says that the columns do not have any attributes in common. Note
that (i)–(iii) can be checked with asymptotic time complexity O(n3), where n is
the maximum of |X | and |Y |.
Theorem 3 can be restated as follows:

Corollary 2. A formal context 〈X, Y, I〉 generates a tree iff, for any y1, y2 ∈ Y ,
we either have {y1}↓ ∩ {y2}↓ ∈ {{y1}↓, {y2}↓}, or {y1}↓ ∩ {y2}↓ ⊆ Y ↓. 
�
We now turn our attention to a converse problem. Given a tree (defined possibly
by its graph-theoretical representation), we wish to find a formal context which
generates the tree. First, let us note that for each tree such a context exists.
This is, in fact, a consequence of the main theorem of concept lattices. In a more
detail, consider a graph G = 〈V, E〉 which is a tree [9]. We say that edge e1 ∈ E
in under e2 ∈ E (in G) if G contains a path v1, e1, . . . , v2, e2, . . . ending in the
root node of G (for the notions involved, see [9]). We now get the following
characterization.

Theorem 4. Let G = 〈V, E〉 be a tree. Define a formal context 〈E, E, IG〉 such
that 〈e1, e2〉 ∈ IG iff e1 is under e2 in G. Then 〈E, E, IG〉 generates a tree which
is isomorphic to G = 〈V, E〉.
Proof. Follows from Theorem 1. We omit details of the proof due to the limited
scope of this paper. 
�
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e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 e 1
0

e 1
1

e 1
2

e1 1 0 0 0 0 0 0 0 0 0 0 0
e2 1 1 0 0 0 0 0 0 0 0 0 0
e3 1 1 1 0 0 0 0 0 0 0 0 0
e4 1 0 0 1 0 0 0 0 0 0 0 0
e5 0 0 0 0 1 0 0 0 0 0 0 0
e6 0 0 0 0 1 1 0 0 0 0 0 0
e7 0 0 0 0 1 1 1 0 0 0 0 0
e8 0 0 0 0 1 1 1 1 0 0 0 0
e9 0 0 0 0 1 1 0 0 1 0 0 0

e10 0 0 0 0 1 0 0 0 0 1 0 0
e11 0 0 0 0 1 0 0 0 0 1 1 0
e12 0 0 0 0 1 0 0 0 0 0 0 1

Fig. 2. Tree and its generating formal context

Example 2. If we return to Example 1 and consider the tree from Fig. 1 (right)
as an input tree, we may construct a formal context generating that tree as
follows. First, we choose a labeling of edges. For instance, we may choose labeling
as in Fig. 2 (left). Then, a formal context which corresponds to 〈E, E, IG〉 from
Theorem 4 is given by data table in Fig. 2 (right). Since we have labeled the edges
in a depth-first manner, 〈E, E, IG〉 is in a lower-triangular form. By Theorem 4,
tree B�(E, E, IG) generated from 〈E, E, IG〉 is isomorphic to the initial tree.

3.2 Characterization of Trees by Attribute Implications

In the previous section, we have shown that contexts generating trees can be
characterized based on the dependencies between attributes (columns of data
tables representing formal contexts). Since attribute dependencies are often ex-
pressed by attribute implications, it is tempting to look at trees in a concept
lattice from the point of view of attribute implications.

The following assertion characterizes contexts generating trees by means of
attribute implications.

Theorem 5. Let 〈X, Y, I〉 be a formal context. Then 〈X, Y, I〉 generates a tree
iff, for any attributes y1, y2 ∈ Y , at least one of the following is true:

(i) I |= {y1}⇒{y2},
(ii) I |= {y2}⇒{y1},
(iii) I |= {y1, y2}⇒Y .

Proof. Note that attribute implications being true in 〈X, Y, I〉 can be character-
ized using operators ↑ and ↓ induced by 〈X, Y, I〉. Namely, one can check that
I |= A ⇒ B iff, for each x ∈ X , if A ⊆ {x}↑ then B ⊆ {x}↑ which is iff, for each
x ∈ X , if x ∈ A↓ then x ∈ B↓ which is true iff A↓ ⊆ B↓, see [7]. Thus, (i) and (ii)
are true iff {y1}↓ ⊆ {y2}↓ and {y2}↓ ⊆ {y1}↓, cf. Theorem 3 (i) and (ii). More-
over, (iii) is true iff we have {y1}↓ ∩ {y2}↓ = ({y1} ∪ {y2})↓ = {y1, y2}↓ ⊆ Y ↓.
Using Theorem 3, we finally obtain that 〈X, Y, I〉 generates a tree iff, for any
y1, y2 ∈ Y , at least one of (i)–(iii) is true. 
�
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3.3 Algorithms For Trees in Concept Lattices

Trees in concept lattices, as they were introduced in previous sections, can be
computed by algorithms for computing formal concepts. Currently, there have
been proposed several algorithms, see e.g. [4,7,12] and a survey paper [11]. Some
of the algorithms for FCA simplify in case of contexts generating trees.

For instance, Lindig’s algorithm for generating formal concepts simplifies due
to the fact that it is no longer necessary to organize found concepts in some
type of searching structure, because we cannot generate the same concept mul-
tiple times. Indeed, recall from [12] that Lindig’s algorithm is based on the
NextNeighbors procedure which, given a concept as its input, generates all
its (lower or upper) neighbors. Then, all concepts are computed using a recursive
procedure which fist uses NextNeighbors to compute neighbors of a given con-
cept and then recursively processes all the neighbors to obtain further concepts.
During the computation, the original procedure has to ensure that no concept
will be computed twice (or multiple times). Therefore, the procedure must orga-
nize all found concepts in a suitable searching structure which allows us to check
whether a concept has already been found. Needless to say, the searching struc-
ture should be efficient because the tests of presence of a concept between the
found concepts influences the overall efficiency of the procedure. The searching
structure is usually implemented as a searching tree or a hashing table.

In case of context generating trees, this part of the algorithm need not be
implemented at all because the only concept that can be computed multiple
times is 〈Y ↓, Y 〉 which is excluded from B�(X, Y, I). This allows to have an
algorithm which is faster and simpler to implement.

4 Conclusions and Future Research

We presented conditions for input data for FCA which are sufficient and neces-
sary for the output concept lattice to form a tree after one removes its bottom
element. Trees are the most common structures which appear in traditional
clustering and classification. Out long-term effort will be focused on establish-
ing connections between FCA and other clustering and classification methods.
First, establishing such relationships helps us see the pros and cons, and limits
of the respective methods. Second, with the basic relationships established, one
can hopefully enrich the respective methods by techniques used in the other
methods. The problems we want to address next include the following ones:

– A concept lattice can be seen as consisting of several overlapping trees. What
can we say about such a “decomposition” of a concept lattice into trees?
What are the relationships between these trees?

– A user of FCA might be interested in a part of a concept lattice rather than
in the whole lattice. Particularly, that part might be a tree, but other parts
might be interesting as well. The issue of selecting parts of concept lattices
by constraints was discussed in [2,3]. In particular, it can be shown that a
tree contained in a concept lattice can be selected by means of a particular
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closure operator. Constraints which lead to tree-like parts of concept lattices
need to be further investigated.

– Investigate connections between concept lattices and decision trees. Both
concept lattices and decision trees contain clusters of objects in their nodes.
Leafs of a decision tree correspond to particular attribute-concepts. A con-
struction of a decision tree may be thought of as a selection of a particular
part from a concept lattice. Containment of decision trees in concept lattices
needs to be further investigated.
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