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Abstract: Formal concept analysis aims at extracting a hierarchical structure (so-called concept
lattice) of clusters (so-called formal concepts) from object-attribute data tables. We present an
algorithm for computing a factor lattice of a concept lattice from the data and a user-specified
similarity threshold a. The presented algorithm computes the factor lattice directly from the data,
without first computing the whole concept lattice and then computing the collections of clusters.
We present theoretical insight and examples.

1 Problem Setting and Preliminaries

1.1 Problem Setting

Formal concept analysis (FCA) aims at extracting a hierarchical structure (so-called concept
lattice) of clusters (so-called formal concepts) from object-attribute data tables. An important
problem in applications of formal concept analysis is a possibly large number of clusters extracted
from data. Factorization is one of the methods being used to cope with the number of clusters.
We present an algorithm for computing a factor lattice of a concept lattice from the data and a
user-specified similarity threshold a. The factor lattice is smaller than the original concept lattice
and its size depends on the similarity threshold. The elements of the factor lattice are collections
of clusters which are pairwise similar in degree at least a. The presented algorithm computes
the factor lattice directly from the data, without first computing the whole concept lattice and
then computing the collections of clusters. We present theoretical insight and examples for
demonstration.

1.2 Preliminaries

For information on foundations and applications of FCA we refer to [5]. As to fuzzy logic, we
refer to [8] and [6]. For information on FCA of data with fuzzy attributes that will be needed
we refer to [1, 2, 3]. In what follows, we sumarize the basic notions.

Fuzzy logic We denote the scale of truth degrees by L. L together with logical connectives
forms a structure L of truth degrees. We assume that L forms a so-called complete residuated
lattice, i.e. ⊗ denotes fuzzy conjunction, → its corresponding (residuated) implication, and
infima

∧
and suprema

∨
exist in L. The most applied set of truth values is the real interval

[0, 1]. Residuated lattices cover the most widely used logical operation like the minimum-based,
ÃLukasiewicz-based, etc. The set of all fuzzy sets (or L-sets) in X is denoted LX . For fuzzy sets
A,B in X we put A ⊆ B (A is a subset of B) if for each x ∈ X we have A(x) ≤ B(x).

Formal concept analysis of data with fuzzy attributes The basic notions are as follows.
Let X and Y be sets of objects and attributes, respectively, I : X × Y → L be a fuzzy relation
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between X and Y . I(x, y) is the degree to which x has y. 〈X, Y, I〉 is called a formal fuzzy
context (a data table with fuzzy attributes). For fuzzy sets A ∈ LX and B ∈ LY , define fuzzy
sets A↑ ∈ LY and B↓ ∈ LX by

A↑(y) =
∧

x∈X

(A(x) → I(x, y)) (1)

B↓(x) =
∧

y∈Y

(B(y) → I(x, y)). (2)

A↑(y) is the truth degree of the fact “y is shared by all objects from A” and B↓(x) is the truth
degree of the fact “x has all attributes from B”. Putting

B (X, Y, I) = {〈A,B〉 | A↑ = B, B↓ = A},
B (X,Y, I) is called a (fuzzy) concept lattice of 〈X, Y, I〉. Its elements 〈A, B〉, called formal
concepts, are thought of as interesting clusters in data 〈X, Y, I〉 (they can be indeed interpreted
as concepts in the sense of Port-Royal logic). Putting 〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B1 ⊇
B2), ≤ models the subconcept-superconcept hierarchy under which B (X, Y, I) is a complete
lattice (see [2] for a further information and study of the structure of fuzzy concept lattices).

2 Fast factorization by similarity

2.1 Factorization by similarity

We first recall the parametrized method of factorization introduced in [1] to which we refer for
details. Given a fuzzy context 〈X, Y, I〉, introduce a binary fuzzy relation ≈ on the set B (X, Y, I)
of all formal concepts of 〈X, Y, I〉 by

(〈A1, B1〉 ≈ 〈A2, B2〉) =
∧

x∈X

A1(x) ↔ A2(x)

for 〈Ai, Bi〉 ∈ B (X,Y, I), i = 1, 2, where
∧

is the infimum (minimum in most cases) and ↔ is
a connective of fuzzy equivalence defined by a ↔ b = (a → b) ∧ (b → a). (〈A1, B1〉 ≈ 〈A2, B2〉),
called the degree of similarity of 〈A1, B1〉 and 〈A2, B2〉, is just the truth degree of “for each object
x: x is covered by A1 iff x is covered by A2”. It can be shown that (〈A1, B1〉 ≈ 〈A2, B2〉) =∧

y∈Y B1(y) ↔ B2(y). Therefore, measuring similarity of formal concepts via extents Ai coincides
with measuring similarity via intents Bi, corresponnding to the duality of extent/intent view.

Given a truth degree a ∈ L (a threshold specified by a user), consider the thresholded relation
a≈ on B (X, Y, I) defined by (〈A1, B1〉, 〈A2, B2〉) ∈ a≈ iff (〈A1, B1〉 ≈ 〈A2, B2〉) ≥ a. That is,
a≈ is the relation “being similar in degree at least a”. a≈ is reflexive and symmetric, but need
not be transitive (it is transitive if a⊗ b = a∧ b holds true in L, i.e. if we use minimum as fuzzy
conjunction). Call a subset B of B (X, Y, I) a a≈-block if it is a maximal subset of B (X, Y, I)
such that each two formal concepts from B are similar in degree at least a (the notion of a
a≈-block generalizes that of an equivalence class: if a≈ is an equivalence relation, a≈-blocks are
exactly the equivalence classes). Denote by B (X, Y, I)/a≈ the collection of all a≈-blocks. It can
be shown that a≈ are special intervals in the concept lattice B (X,Y, I). In detail, for a formal
concept 〈A,B〉 ∈ B (X,Y, I), put

〈A,B〉a =
∧
{〈A′, B′〉 | (〈A,B〉, 〈A′, B′〉) ∈ a≈}, 〈A,B〉a =

∨
{〈A′, B′〉 | (〈A,B〉, 〈A′, B′〉) ∈ a≈}.

That is 〈A,B〉a and 〈A, B〉a are the infimum and the supremum of the set of all formal concepts
which are similar to 〈A,B〉 in degree at least a. Operators . . .a and . . .a are important in
description of a≈-blocks:
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Lemma 1 a≈-blocks are exactly intervals of B (X, Y, I) of the form [〈A,B〉a, (〈A,B〉a)a], i.e.

B (X, Y, I)/a≈ = {[〈A,B〉a, (〈A, B〉a)a] | 〈A,B〉 ∈ B (X, Y, I)}.

Note that an interval with lower bound 〈A1, B1〉 and upper bound 〈A2, B2〉 is the subset
[〈A1, B1〉, 〈A2, B2〉] = {〈A,B〉 | 〈A1, B1〉 ≤ 〈A,B〉 ≤ 〈A2, B2〉}. Now, define a partial
order ¹ on blocks of B (X, Y, I)/a≈ by [c1, c2] ¹ [d1, d2] iff c1 ≤ d1(iff c2 ≤ d2) where
[c1, c2], [d1, d2] ∈ B (X, Y, I)/a≈, i.e. c1, c2, d1, d2 are suitable formal concepts from B (X, Y, I)
and ci ≤ di denotes that in B (X,Y, I), ci is under (a subconcept of) di. Then we have

Theorem 1 B (X,Y, I)/a≈ equipped with ¹ is a partially ordered set which is a complete lattice,
the so-called factor lattice of B (X, Y, I) by similarity ≈ and a threshold a.

Elements of B (X, Y, I)/a≈ can be seen as similarity-based granules of formal concepts/clusters
from B (X,Y, I). B (X, Y, I)/a≈ thus provides a granular view on (the possibly large) B (X,Y, I).
For further details and properties of B (X, Y, I)/a≈ we refer to [1].

2.2 Similarity-based factorization of input data 〈X,Y, I〉 and direct computing of
the factor lattice B (X, Y, I)/a≈

Computing B (X,Y, I)/a≈ using definition and Lemma 1, one has (1) to compute the whole
concept lattice B (X,Y, I) and then (2) to compute a≈-blocks on B (X,Y, I), which can be quite
demanding.

We are going to propose a way to compute B (X, Y, I)/a≈ in a more efficient way: First, we
propose a construction of a similarity-based factorization assigning to 〈X, Y, I〉 a “factorized
data” 〈X,Y, I〉/a. Then we show that B (X,Y, I)/a≈ is isomorphic to B(〈X, Y, I〉/a). This
reduces the computation of B (X,Y, I)/a≈ to the computation of an ordinary fuzzy concept
lattice B(〈X, Y, I〉/a) for which we have an algorithm (see [3]) with a polynomial time delay
complexity (see [7]).

We need some auxiliary results, for details we refer to [1, 2]. For a fuzzy set C in U and a ∈ L,
the fuzzy sets a → C and a⊗C in U are defined by (a → C)(u) = a → C(u) and (a⊗C)(u) =
a⊗C(u) for each u ∈ U . For fuzzy sets C,D in U , put (C ≈ D) =

∧
u∈U C(u) ↔ D(u).

Furthermore, we call a fuzzy set A in X an extent if there is a fuzzy set B in Y such that
〈A,B〉 ∈ B (X,Y, I) (similarly, B is an intent if there is A with 〈A,B〉 ∈ B (X,Y, I)).

Lemma 2 If A is an extent then so is a → A; similarly, if B is an intent then so is a → B.

Proof. For extents (for intets, the argument is dual): The fact follows from the fact that
extents are exactly the fixed point of a fuzzy closure operator ↑↓ : C 7→ C↑↓ and the fact that
for a fixed point A of a fuzzy closure operator, a → A is a fixed point as well.

The next lemma shows that for a formal concept 〈A,B〉, 〈A,B〉a and 〈A, B〉a (defined as infimum
and supremum of all formal concepts similar to 〈A,B〉 in degree at least a) can be computed
from 〈A,B〉 directly.

Lemma 3 For 〈A,B〉 ∈ B (X, Y, I), we have (a) 〈A,B〉a = 〈(a⊗A)↑↓, a → B〉 and (b)
〈A,B〉a = 〈(a → A), (a⊗B)↓↑〉.

Proof. We give only a sketch of (a). First, one can show that (a1) (a⊗A)↑↓ is an extent
of a formal concept 〈(a⊗A)↑↓, D〉 which is similar to 〈A,B〉 in degree at least a. Second, one
can show that (a2) if 〈C,F 〉 is a formal concept similar to 〈A, B〉 in degree at least a then
〈(a⊗A)↑↓, D〉 ≤ 〈C, F 〉. From (a1) and (a2) we have that 〈(a⊗A)↑↓, D〉 is the least formal
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concept similar to 〈A,B〉 in degree at least a. Therefore, 〈A,B〉a = 〈(a⊗A)↑↓, D〉. It remains
to show D = a → B. This can be done by showing that (a3) a → B is an intent of a concept c
which is similar to 〈A,B〉 in degree at least a, and (a4) if 〈C, F 〉 is a concept similar to 〈A,B〉 in
degree at least a then c ≤ 〈C, F 〉. Indeed, from (a3) and (a4) it follows that a → B is the intent
of the least formal concept similar to 〈A,B〉 in degree at least a, i.e. a → B = D. Verification
of (a3) and (a4) completes the proof.

Therefore, it follows that (〈A,B〉a)a = 〈a → (a⊗A)↑↓, (a⊗(a → B))↓↑〉.
For a formal fuzzy context 〈X,Y, I〉 and a (user-specified) threshold a ∈ L, introduce a formal
fuzzy context 〈X, Y, I〉/a by

〈X,Y, I〉/a := 〈X, Y, a → I〉.
〈X,Y, I〉/a will be called the factorized context of 〈X, Y, I〉 by threshold a. That is, 〈X,Y, I〉/a
has the same objects and attributes as 〈X,Y, I〉, and the incidence relation of 〈X, Y, I〉/a is
a → I. Since

(a → I)(x, y) = a → I(x, y),

computing 〈X, Y, I〉/a from 〈X, Y, I〉 is easy. The following is our main theorem.

Theorem 2 For a formal fuzzy context 〈X, Y, I〉 and a threshold a ∈ L we have

B (X, Y, I)/a≈ ∼= B(〈X, Y, I〉/a).

In words, B (X, Y, I)/a≈ is isomorphic to B(〈X,Y, I〉/a). Moreover, under the isomorphism,
[〈A1, B1〉, 〈A2, B2〉] ∈ B (X, Y, I)/a≈ corresponds to 〈A2, B1〉 ∈ B(〈X, Y, I〉/a).

Proof. Let ↑ and ↓ denote the operators induced by I and ↑a and ↓a denote the operators
induced by a → I. Take any A ∈ LX . Then A↑a(y) =

∧
x∈X A(x) → (a → I(x, y)) =

∧
x∈X a →

(A(x) → I(x, y)) = a → ∧
x∈X(A(x) → I(x, y)) = a → A↑(x), and A↑a↓a(x) =

∧
y∈Y A↑a(y) →

(a → I(x, y)) =
∧

y∈Y a → (A↑a(y) → I(x, y)) = a → ∧
y∈Y (A↑a(y) → I(x, y)) = a →∧

y∈Y ([
∧

x∈X a → (A(x) → I(x, y))] → I(x, y)) = a → ∧
y∈Y ([

∧
x∈X(a⊗A(x)) → I(x, y)] →

I(x, y)) = a → ∧
y∈Y ((a⊗A)↑(x) → I(x, y)) = a → (a⊗A)↑↓(x), i.e.

A↑a = a → A↑ and A↑a↓a = a → (a⊗A)↑↓. (3)

Now, let [〈A1, B1〉, 〈A2, B2〉] ∈ B (X, Y, I)/a≈. Using Lemma 1 and Lemma 3, there is 〈A,B〉 ∈
B (X,Y, I) such that 〈A1, B1〉 = 〈A, B〉a = 〈(a⊗A)↑↓, a → B〉 and 〈A2, B2〉 = (〈A,B〉a)a =
〈a → (a⊗A)↑↓, (a⊗(a → B))↓↑〉. Since 〈A,B〉 = 〈A,A↑〉, (3) yields A2 = a → (a⊗A)↑↓ = A↑a↓a

and B1 = a → B = a → A↑ = A↑a . This shows 〈A2, B1〉 ∈ B (X, Y, a → I) = B(〈X,Y, I〉/a).

Conversely, if 〈A2, B1〉 ∈ B(〈X, Y, I〉/a) then using (3), B1 = A↑a
2 = a → A↑2 and A2 = A↑a↓a

2 =
a → (a⊗A2)↑↓. By Lemma 1 and Lemma 3, [〈B↓

1 , B1〉, 〈A2, A
↑
2〉] ∈ B (X, Y, I)/a≈. The proof is

complete.

Remark 1. (1) As we have seen, the blocks of B (X,Y, I)/a≈ can be reconstructed from
the formal concepts of B(〈X, Y, I〉/a): If 〈A,B〉 ∈ B(〈X, Y, I〉/a) then [〈B↓, B〉, 〈A, A↑〉] ∈
B (X,Y, I)/a≈.

(2) Computing B(〈X, Y, I〉/a) means computing of the ordinary fuzzy concept lattice. This can
be done by an algorithm of polynomial time delay complexity, see [3].

This shows a way to obtain B (X, Y, I)/a≈ without computing first the whole B (X,Y, I) and
then computing the factorization. Note that in [4], we showed an alternative way to speed
up the computation of B (X, Y, I)/a≈ by showing that suprema of blocks of B (X, Y, I)/a≈ are
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Table 1: Data table (fuzzy context).

1 2 3 4 5 6 7
1 Czech 0.4 0.4 0.6 0.2 0.2 0.4 0.2
2 Hungary 0.4 1.0 0.4 0.0 0.0 0.4 0.2
3 Poland 0.2 1.0 1.0 0.0 0.0 0.0 0.0
4 Slovakia 0.2 0.6 1.0 0.0 0.2 0.2 0.2
5 Austria 1.0 0.0 0.2 0.2 0.2 1.0 1.0
6 France 1.0 0.0 0.6 0.4 0.4 0.6 0.6
7 Italy 1.0 0.2 0.6 0.0 0.2 0.6 0.4
8 Geramny 1.0 0.0 0.6 0.2 0.2 1.0 0.6
9 UK 1.0 0.2 0.4 0.0 0.2 0.6 0.6
10 Japan 1.0 0.0 0.4 0.2 0.2 0.4 0.2
11 Canada 1.0 0.2 0.4 1.0 1.0 1.0 1.0
12 USA 1.0 0.2 0.4 1.0 1.0 0.2 0.4

attributes: 1 - Gross Domestic Product per capita (USD), 2 - Consumer Price Index (1995=100),
3 - Unemployment Rate (percent - ILO), 4 - Production of electricity per capita (kWh), 5 -
Energy consumption per capita (GJ), 6 - Export per capita (USD), 7 - Import per capita (USD)

fixed points of a certain fuzzy closure operator. Compared to that, the present approach shows
that the blocks of B (X, Y, I)/a≈ can be interpreted as formal concepts in a “factorized context”
〈X,Y, I〉/a, i.e. in a context in which objects and attributes are more similar than in the original
context 〈X, Y, I〉. Indeed, for any x1, x2 ∈ X and y1, y2 ∈ Y one can easily verify that

I(x1, y1) ↔ I(x1, y1) ≤ (a → I)(x1, y1) ↔ (a → I)(x2, y2)

which intuitively says that in the factorized context, the table entries are more similar (closer)
than in the original one.

3 Examples and experiments

Due to the limited scope, we demonstrate our algorithm on a data table (fuzzy context) from
Tab. 1 for which we consider various parameters a (threshold) and some characteristics for com-
parison. The data table contains countries (objects from X) and some of their economic charac-
teristics (attributes from Y ). The original values of the characteristics are scaled to interval [0, 1]
so that the characteristics can be considered as fuzzy attributes. Tab. 2 summarizes the effect of
our algorithm and some related characteristics when using ÃLukasiewicz fuzzy logical connectives.
The whole concept lattice B (X,Y, I) contains 774 formal concepts, computing B (X,Y, I) using
the polynomial time delay algorithm from [3] takes 2292ms. The columns correspond to different
threshold values a = 0.2, 0.4, 0.6, 0.8. Entries “size |B (X,Y, I)/a≈|” contain the number of a≈-
blocks; “naive algorithm (ms)” contain the time in ms for computing B (X, Y, I)/a≈ by first gen-
erating B (X,Y, I) and subsequently generating the a≈-blocks by producing [〈A,B〉a, (〈A,B〉a)a];
“our algorithm (ms)” contain the time in ms for computing B (X,Y, I)/a≈ by reduction to the
computation of B(〈X, Y, I〉/a); “reduction |B (X,Y, I)/a≈|/|B (X, Y, I)|” contain the reduction
factors of the size of the concept lattice; “time reduction” contain “our algorithm (ms)” divided
by “naive algorithm (ms)” (1/“time reduction” is thus the speedup). Tab. 3 shows the same
characteriztics when using the minimum-based fuzzy logical operations.

Acknowledgment R. Bělohlávek gratefully acknowledges support by grant No. 201/02/P076
of the GAČR. Supported by grant. No. 1ET101370417 of the GA AV ČR.
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Table 2: ÃLukasiewicz fuzzy logical connectives, B (X,Y, I) of data from Tab. 1: |B (X,Y, I)| =
774, time for computing B (X, Y, I) = 2292 ms; table entries for thresholds a = 0.2, 0.4, 0.6, 0.8.

0.2 0.4 0.6 0.8
size |B (X,Y, I)/a≈| 8 57 193 423
naive algorithm (ms) 8995 9463 8573 9646
our algorithm (ms) 23 214 383 1517
reduction |B (X,Y, I)/a≈|/|B (X, Y, I)| 0.010 0.073 0.249 0.546
time reduction 0.002 0.022 0.044 0.157

Table 3: Minimum-based fuzzy logical connectives, B (X,Y, I) of data from Tab. 1:
|B (X,Y, I)| = 304, time for computing B (X, Y, I) = 341 ms; table entries for thresholds
a = 0.2, 0.4, 0.6, 0.8.

0.2 0.4 0.6 0.8
size |B (X,Y, I)/a≈| 8 64 194 304
naive algorithm (ms) 1830 1634 3787 4440
our algorithm (ms) 23 106 431 1568
reduction |B (X,Y, I)/a≈|/|B (X, Y, I)| 0.026 0.210 0.638 1.000
time reduction 0.012 0.064 0.113 0.353
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[1] R Bělohlávek. Similarity relations in concept lattices. J. Logic Comput. 10(6):823–845, 2000.

[2] R Bělohlávek. Concept lattices and order in fuzzy logic. Annals of Pure and Applied Logic
128(2004), 277–298.
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[4] Bělohlávek R., Dvořák J., Outrata J.: Fast factorization of similarity in formal concept
analysis (submitted).

[5] B. Ganter, R. Wille. Formal Concept Analysis. Mathematical Foundations. Springer, Berlin,
1999.

[6] Gottwald S.: A Treatise on Many-Valued Logics. Research Studies Press, Baldock, Hertford-
shire, England, 2001.

[7] D. S. Johnson, M. Yannakakis, C. H. Papadimitrou. On generating all maximal independent
sets. Inf. Processing Letters 15:129–133, 1988.

[8] G. .J. Klir, B. Yuan. Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice Hall,
Upper Saddle River, NJ, 1995.

[9] G. Snelting, F. Tip. Understanding class hierarchies using concept analysis. ACM Trans.
Program. Lang. Syst. 22(3):540–582, May 2000.

          583                  RASC2004 


	Problem Setting and Preliminaries
	Problem Setting
	Preliminaries

	Fast factorization by similarity
	Factorization by similarity
	Similarity-based factorization of input data $ { delimiter "426830A {X,Y,I}delimiter "526930B } $ and direct computing of the factor lattice $ {{protect 
elax B}left ( X, Y, I
ight )} / {}^{a}{ approx } $

	Examples and experiments

