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Abstract— Formal concept analysis aims at extracting a hier-
archical structure (so-called concept lattice) of clusters (so-called
formal concepts) from object-attribute data tables. An important
problem in applications of formal concept analysis is a possibly
large number of clusters extracted from data. Factorization is one
of the methods being used to cope with the number of clusters. We
present an algorithm for computing a factor lattice of a concept
lattice from the data and a user-specified similarity thresholda.
The factor lattice is smaller than the original concept lattice and
its size depends on the similarity threshold. The elements of the
factor lattice are collections of clusters which are pairwise similar
in degree at leasta. The presented algorithm computes the factor
lattice directly from the data, without first computing the whole
concept lattice and then computing the collections of clusters. We
present theoretical insight and examples for demonstration.

I. PROBLEM SETTING AND PRELIMINARIES

A. Problem Setting

Formal concept analysis (FCA)[9] is a method of ex-
ploratory data analysis which aims at extracting a hierarchical
structure of clusters from object-attribute data tables. The
clusters(A, B), called formal concepts, consist of a collection
A (concept extent) of objects and a collectionB (concept
intent) of attributes. Formal concepts can be partially ordered
by a natural subconcept-superconcept relation. The resulting
partially ordered set, called a concept lattice, can be visualized
by a labeled Hasse diagram. The extent-intent definition of
formal concepts goes back to traditional Port-Royal logic.
Alternatively, formal concepts can be thought of as maxi-
mal rectangles contained in object-attribute data table. The
attributes can be binary (0/1), fuzzy (degrees e.g. in [0,1], then
the clusters are fuzzy as well), or more general, see e.g.[9],
[2], [5], [12].

FCA has been applied in various fields, for instance in
software engineering, reengineering problems (redesign of
hierarchical structures), text classification (analyzing e-mail
collections, classification of library items), psychology (de-
velopment of concepts by children), civil engineering (system
for checking dependencies in regulations), classification and
systematizing of heuristic methods, physiology (color percep-
tion), preprocessing of data for reduction; see[1], [8], [13],
[15] and [9] for references and further applications.

A direct user comprehension and interpretation of the par-
tially ordered set of clusters (concept lattice) may be difficult
due to a possibly large number of clusters extracted from
the data table. A way to go is to consider, instead of the
whole concept lattice, its suitable factor lattice which can

be considered a granularized version of the original concept
lattice: Its elements are classes of clusters and the factor lattice
is smaller. A method of factorization by a so-called compatible
reflexive and symmetric relation (a tolerance) on the set of
clusters was described in[9]. Interpreting the tolerance relation
as similarity on clusters/concepts, the elements of the factor
lattice are classes of pairwise similar clusters/concepts. The
specification of the tolerance relation is, however, left to the
user. In[2], a parametrized method of factorization for data
with fuzzy attributes was presented: the tolerance relation is
induced by a threshold (parameter of factorization) specified
by a user. Using a suitable measure of similarity degree of
clusters/concepts (see later), the method does the following.
Given a thresholda (e.g. a number from[0, 1]), the elements
of the factor lattice are similarity blocks determined bya
(maximal collections of formal concepts which are pairwise
similar in degree at leasta). The smallera, the smaller the
factor lattice (i.e. the larger the reduction). In the extreme cases
a = 0 or a = 1, the factor lattice degenerates and contains just
one element (fora = 0) or is the same (up to an isomorphism)
as the original concept lattice (fora = 1). Fora between 0 and
1, the factor lattice provides a granular view on the original
concept lattice (granules are the similarity blocks).

In order to compute the factor lattice (directly by definition),
we have to compute the whole concept lattice (this can be
done by an algorithm with a polynomial time delay, see[4])
and then compute all the similarity blocks, i.e. elements of the
factor lattice (again, this can be accomplished by an algorithm
with polynomial time delay, see later).

In this paper, we present a way to compute the factor
lattice directly from data (input: data table and user-specified
thresholda; output: factor lattice, i.e. similarity blocks given
by a). The resulting algorithm is significantly faster than
computing first the whole concept lattice and then computing
the similarity blocks.

The paper is organized as follows. SectionI-B is a brief
survey of related work. SectionI-C presents preliminaries on
fuzzy sets and formal concept analysis of data with fuzzy
attributes. In SectionII we present our approach. SectionIII
presents experiments and demonstrates the speed-up.

B. Related work

Due to the limited scope, we only briefly mention: A variety
of methods to help to reduce/manage the size of a concept
lattice is presented in[9]. Except of the above-mentioned
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factorization, there are several methods of decomposition
described in[9]. A method based on selection (by user) of
relevant attributes and dealing with only the corresponding
part of a concept lattice is presented in[7]. In [6], the authors
face the problem of a large concept lattice by computing
and visualizing only its relevant local part which is used for
browsing based on a user query.

C. Preliminaries

Fuzzy sets and fuzzy logic
We assume basic familiarity with fuzzy logic and fuzzy

sets [11]. An element may belong to a fuzzy set in an
intermediate degree not necessarily being 0 or 1. Formally,
a fuzzy setA in a universeX is a mapping assigning to
each x ∈ X a truth degreeA(x) ∈ L where L is some
partially ordered set of truth degrees containing at least0
(full falsity) and 1 (full truth). L needs to be equipped with
logical connectives, e.g.⊗ (fuzzy conjunction),→ (fuzzy
implication), etc.L together with logical connectives forms
a structureL of truth degrees. We assume thatL forms a
so-called residuated lattice in which arbitrary infima

∧
and

suprema
∨

exist.
The most applied set of truth values is the real interval[0, 1];

with a ∧ b = min(a, b), a ∨ b = max(a, b), and with three
important pairs of fuzzy conjunction and fuzzy implication:
Łukasiewicz (a⊗ b = max(a + b − 1, 0), a → b = min(1 −
a + b, 1)), minimum (a⊗ b = min(a, b), a → b = 1 if a ≤ b
and= b else), and product (a⊗ b = a · b, a → b = 1 if a ≤ b
and = b/a else). Another possibility is to take a finite chain
{a0 = 0, a1, . . . , an = 1} (a0 < · · · < an) equipped with
Łukasiewicz structure (ak ⊗ al = amax(k+l−n,0), ak → al =
amin(n−k+l,n)) or minimum (ak ⊗ al = amin(k,l), ak → al =
an for ak ≤ al andak → al = al otherwise).

The set of all fuzzy sets (orL-sets) inX is denotedLX .
For fuzzy setsA,B in X we put A ⊆ B (A is a subset of
B) if for eachx ∈ X we haveA(x) ≤ B(x). More generally,
the degreeS (A, B) to which A is a subset ofB is defined
by S (A, B) =

∧
x∈X A(x) → B(x). Then, A ⊆ B means

S (A,B) = 1.

Formal concept analysis of data with fuzzy attributesLet
X andY be sets of objects and attributes, respectively,I be
a fuzzy relation betweenX and Y . That is, I : X × Y →
L assigns to eachx ∈ X and eachy ∈ Y a truth degree
I(x, y) ∈ L to which objectx has attributey. The triplet
〈X, Y, I〉 is called a formal fuzzy context (a data table with
fuzzy attributes).

For fuzzy setsA ∈ LX and B ∈ LY , define fuzzy sets
A↑ ∈ LY andB↓ ∈ LX by

A↑(y) =
∧

x∈X

(A(x) → I(x, y)) (1)

and
B↓(x) =

∧

y∈Y

(B(y) → I(x, y)). (2)

Using basic rules of predicate fuzzy logic,A↑(y) is the truth
degree of the fact “y is shared by all objects fromA” and

B↓(x) is the truth degree of the fact “x has all attributes from
B”. Putting

B (X, Y, I) = {〈A, B〉 | A↑ = B, B↓ = A},
B (X, Y, I) is the set of all pairs〈A, B〉 such that (a)A is
the collection of all objects that have all the attributes of (the
intent) B and (b) B is the collection of all attributes that
are shared by all the objects of (the extent)A. Elements of
B (X, Y, I) are called formal concepts of〈X, Y, I〉 (interesting
clusters in data);B (X, Y, I) is called the concept lattice given
by 〈X,Y, I〉 (collection of all interesting clusters). Both the
extent A and the intentB of a formal concept〈A,B〉 are
in general fuzzy sets and represent collections of objects and
attributes which are covered by the concept.

Putting

〈A1, B1〉 ≤ 〈A1, B1〉 iff A1 ⊆ A2(iff B1 ⊇ B2) (3)

for 〈A1, B1〉, 〈A2, B2〉 ∈ B (X, Y, I), ≤ models the
subconcept-superconcept hierarchy inB (X, Y, I). That is,
being more general means to apply to a larger collection of
objects and to cover a smaller collection of attributes.

The following is a part of characterization of the structure
of fuzzy concept lattices, see[3].

Theorem 1:The setB (X, Y, I) is under≤ a complete
lattice where infima and suprema are given by

∧

j∈J

〈Aj , Bj〉 = 〈
⋂

j∈J

Aj , (
⋃

j∈J

Bj)↓↑〉 , (4)

∨

j∈J

〈Aj , Bj〉 = 〈(
⋃

j∈J

Aj)↑↓,
⋂

j∈J

Bj〉 . (5)

II. FAST FACTORIZATION BY SIMILARITY

A. Factorization by similarity

In this section, we recall the parametrized method of factor-
ization introduced in[2] to which we refer for details. Given
a fuzzy context〈X,Y, I〉, introduce a binary fuzzy relation≈
on the setB (X, Y, I) of all formal concepts of〈X,Y, I〉 by

(〈A1, B1〉 ≈ 〈A2, B2〉) =
∧

x∈X

A1(x) ↔ A2(x)

for 〈Ai, Bi〉 ∈ B (X, Y, I), i = 1, 2, where
∧

is the infimum
(minimum in most cases) and↔ is a connective of fuzzy
equivalence defined bya ↔ b = (a → b) ∧ (b → a).
(〈A1, B1〉 ≈ 〈A2, B2〉) is called the degree of similarity of
〈A1, B1〉 and〈A2, B2〉. It is easily seen that it is just the truth
degree of “for each objectx: x is covered byA1 iff x is
covered byA2”. It can be shown that

(〈A1, B1〉 ≈ 〈A2, B2〉) =
∧

y∈Y

B1(y) ↔ B2(y).

Therefore, measuring similarity of formal concepts via extents
Ai coincides with measuring similarity via intentsBi, corre-
sponnding to the duality of extent/intent view.



Given a truth degreea ∈ L (a threshold specified by a user),
consider the thresholded relationa≈ onB (X, Y, I) defined by

(〈A1, B1〉, 〈A2, B2〉) ∈ a≈ iff

(〈A1, B1〉 ≈ 〈A2, B2〉) ≥ a.

That is,a≈ is the relation “being similar in degree at leasta”.
a≈ is reflexive and symmetric, but need not be transitive (it
is transitive if a⊗ b = a ∧ b holds true inL, i.e. if we use
minimum as fuzzy conjunction). Call a subsetB of B (X,Y, I)
a a≈-block if it is a maximal subset ofB (X, Y, I) such
that each two formal concepts fromB are similar in degree
at leasta (the notion of aa≈-block generalizes that of an
equivalence class: ifa≈ is an equivalence relation,a≈-blocks
are exactly the equivalence classes). Denote byB (X, Y, I)/a≈
the collection of alla≈-blocks.

It can be shown thata≈ are special intervals in the concept
lattice B (X,Y, I). In detail, for a formal concept〈A, B〉 ∈
B (X,Y, I), put

〈A,B〉a :=
∧
{〈A′, B′〉 | (〈A,B〉, 〈A′, B′〉) ∈ a≈}

and

〈A,B〉a :=
∨
{〈A′, B′〉 | (〈A,B〉, 〈A′, B′〉) ∈ a≈}.

That is 〈A,B〉a and 〈A,B〉a are the infimum and the supre-
mum of the set of all formal concepts which are similar to
〈A,B〉 in degree at leasta. . . .a and . . .a are important in
description ofa≈-blocks. Namely, we have the following.

Lemma 2:a≈-blocks are exactly intervals ofB (X, Y, I) of
the form [〈A,B〉a, (〈A,B〉a)a], i.e.

B (X,Y, I)/a≈ =
{[〈A, B〉a, (〈A,B〉a)a] | 〈A,B〉 ∈ B (X, Y, I)}.

Note that an interval with lower bound〈A1, B1〉 and upper
bound〈A2, B2〉 is the subset

[〈A1, B1〉, 〈A2, B2〉] =
{〈A,B〉 | 〈A1, B1〉 ≤ 〈A,B〉 ≤ 〈A2, B2〉}.

Now, define a partial order¹ on blocks ofB (X, Y, I)/a≈
by

[c1, c2] ¹ [d1, d2] iff c1 ≤ d1(iff c2 ≤ d2)

where[c1, c2], [d1, d2] ∈ B (X, Y, I)/a≈, i.e. c1, c2, d1, d2 are
suitable formal concepts fromB (X, Y, I) andci ≤ di denotes
that inB (X, Y, I), ci is under (a subconcept of)di. Then we
have

Theorem 3:B (X, Y, I)/a≈ equipped with¹ is a partially
ordered set which is a complete lattice, the so-called factor
lattice ofB (X,Y, I) by similarity ≈ and a thresholda.

Elements ofB (X, Y, I)/a≈ can be seen as similarity-based
granules of formal concepts/clusters fromB (X,Y, I).
B (X,Y, I)/a≈ thus provides a granular view on (the possibly
large)B (X, Y, I). Note also that ifa≈ is transitive then it is a
congruence relation onB (X, Y, I) andB (X, Y, I)/a≈ is the
usual factor lattice modulo a congruence. For further details
and properties ofB (X, Y, I)/a≈ we refer to[2].

B. Computing the factor latticeB (X,Y, I)/a≈ directly from
input data

In order to computeB (X,Y, I)/a≈ using definition and
Lemma2, one has (1) to compute the whole concept lattice
B (X, Y, I) and then (2) to computea≈-blocks onB (X, Y, I),
which can be quite demanding. We are going to propose a
way to computeB (X,Y, I)/a≈ directly from input data. It
will turn out that our algorithm has a polynomial time delay
(see[10]).

We need some auxiliary results. For basic properties of
fuzzy concept lattices we refer e.g. to[2], [3]. For a fuzzy
setC in U anda ∈ L, the fuzzy setsa → C anda⊗C in U
are defined by(a → C)(u) = a → C(u) and (a⊗C)(u) =
a⊗C(u) for eachu ∈ U . For fuzzy setsC, D in U , put
(C ≈ D) =

∧
u∈U C(u) ↔ D(u). Furthermore, we call a

fuzzy setA in X an extent if there is a fuzzy setB in Y such
that 〈A, B〉 ∈ B (X, Y, I) (similarly, B is an intent if there is
A with 〈A,B〉 ∈ B (X, Y, I)).

Lemma 4: If A is an extent then so isa → A; similarly, if
B is an intent then so isa → B.

Proof: We prove the assertion for extents. LetA be an
extent, i.e.〈A,B〉 ∈ B (X, Y, I) for some B. We have to
show that〈a → A,B′〉 ∈ B (X,Y, I). It is easy to see that
it suffices to show thata → A = (a → A)↑↓ (since then
〈a → A, (a → A)↑〉 is a formal concept). Sincea → A ⊆
(a → A)↑↓ is always the case, we have to show(a → A)↑↓ ⊆
a → A which holds iff (a → A)↑↓(x) ≤ a → A(x) for
each x ∈ X. Using adjointness, the latter is equivalent to
a ≤ (a → A)↑↓(x) → A(x). Since(a → A)↑↓(x) → A(x) ≥∧

x∈X(a → A)↑↓(x) ↔ A(x) = ((a → A)↑↓ ≈ A), it suffices
to showa ≤ ((a → A)↑↓ ≈ A) which can be shown using
(A1 ≈ A2) ≤ (A↑1 ≈ A↑2) ≤ (A↑↓1 ≈ A↑↓2 ) (see[2]) by a
straightforward verification.

The next lemma shows that for a formal concept〈A,B〉,
〈A,B〉a and 〈A, B〉a (defined as infimum and supremum of
all formal concepts similar to〈A,B〉 in degree at leasta) can
be computed from〈A, B〉 directly.

Lemma 5:For 〈A,B〉 ∈ B (X,Y, I), we have (a)
〈A,B〉a = 〈(a⊗A)↑↓, a → B〉 and (b) 〈A, B〉a =
〈(a → A), (a⊗B)↓↑〉.

Proof: Due to duality we verify only (a). First, one can
show that (a1)(a⊗A)↑↓ is an extent of a formal concept
〈(a⊗A)↑↓, D〉 which is similar to〈A,B〉 in degree at least
a, and (a2) if 〈C, F 〉 is a formal concept similar to〈A,B〉
in degree at leasta then 〈(a⊗A)↑↓, D〉 ≤ 〈C, F 〉. It remains
to showD = a → B. To this end, it is sufficient to see that
(a3) a → B is an intent of a conceptc which is similar to
〈A,B〉 in degree at leasta, and (a4) if〈C, F 〉 is a concept
similar to 〈A,B〉 in degree at leasta thenc ≤ 〈C,F 〉. Indeed,
from (a3) and (a4) it follows thata → B is the intent of the
least formal concept similar to〈A, B〉 in degree at leasta,
i.e. a → B = D. We verify (a3) and (a4). (a3): By Lemma4,
a → B is an intent. Using adjointness we easily geta ≤ (B ≈
a → B) = (〈A,B〉 ≈ c), proving (a3). (a4): We need to show



F ⊆ a → B. Sincea ≤ (〈A,B〉 ≈ 〈C, F 〉) = (B ≈ F ),
adjointness givesa⊗F ⊆ B and thenF ⊆ a → B, proving
(a4). The proof is complete.

Thus we have (〈A,B〉a)a =
〈a → (a⊗A)↑↓, (a⊗(a → B))↓↑〉.

Lemma 6:For 〈A, B〉 ∈ B (X,Y, I) we have〈A,B〉a =
((〈A,B〉a)a)a.

Proof: First we show that for every formal conceptsc
andd we have (1)c ≤ d implies ca ≤ da, (2) c ≤ d implies
ca ≤ da, (3) c ≤ (ca)a, (4) c ≥ (ca)a. (1): Recall thatca =∧{f ∈ B (X, Y, I) | 〈c, f〉 ∈ a≈}. We need to show that if
〈d, f〉 ∈ a≈ then ca ≤ f . Thus suppose〈d, f〉 ∈ a≈. From
〈c, c〉 ∈ a≈ and from the fact thata≈ is a compatible tolerance
on B (X,Y, I) we geta ≤ 〈c ∧ d, c ∧ f〉 = 〈c, c ∧ f〉 and so
f ≥ c ∧ f ≥ ca, proving (1). (2) can be proved analogously.
(3) and (4) are obvious.

Let c = 〈A,B〉. By (3), c ≤ (ca)a and soca ≤ ((ca)a)a

by (1). Applying (4) to ca we get ca ≥ ((ca)a)a, proving
ca = ((ca)a)a.

By Lemma6, if a a≈-block [c1, c2] is generated by〈A, B〉 ∈
B (X,Y, I), i.e. c1 = 〈A,B〉a, c2 = (〈A, B〉a)a, then it is also
generated byc2, i.e. c1 = (c2)a andc2 = ((c2)a)a.

Therefore,a≈-blocks [c1, c2] are uniquely given by their
supremac2. Moreover, since each formal conceptc2 = 〈A,B〉
is uniquely given byA (namely, B = A↑), a≈-blocks are
uniquely given by extents of their suprema. Therefore, denote
the set of all extents of suprema ofa≈-blocks byESB(a), i.e.

ESB(a) = {A ∈ LX | 〈A, B〉 ∈ B (X, Y, I) and

[〈A,B〉a, 〈A, B〉] ∈ B (X, Y, I)/a≈}.
We are going to present the main result. LetC : A → C(A)

be a mapping (assigning a fuzzy setC(A) in X to a fuzzy
setA in X). A fixed point ofC is any fuzzy setA in X such
that A = C(A). Let fix(C) denote the set of all fixed points
of C, i.e.

fix(C) = {A ∈ LX | A = C(A)}.
Recall (see e.g.[4]) thatC is called a fuzzy closure operator

in X if

A ⊆ C(A) (6)

S(A1, A2) ≤ S(C(A1), C(A2)) (7)

C(A) = C(C(A)) (8)

for any A, A1, A2 ∈ LX .

Theorem 7:Given input data〈X,Y, I〉 and a thresholda ∈
L, a mappingCa sending a fuzzy setA in X to a fuzzy set
a → (a⊗A)↑↓ in X is a fuzzy closure operator inX for
which fix(Ca) = ESB(a).

Therefore,A is a fixed point ofCa if and only if A is the
extent of some formal conceptc2 which is the supremum of
somea≈-block [c1, c2] ∈ B (X,Y, I)/a≈.

Proof: First, one can verify thatCa is a fuzzy closure
operator (we omit the proof and refer to a forthcoming paper).

Second, we verifyfix(Ca) = ESB(a). Let A ∈ fix(Ca).
Then A = Ca(A) = a → (a⊗A)↑↓. By Lemma 5,
[〈A,A↑〉a, 〈A,A↑〉] is a a≈-block and soA is the extent of
a supremum of a block, i.e.A ∈ ESB(a). Conversely, let
A ∈ ESB(a). Then [〈A,A↑〉a, 〈A,A↑〉] is an a≈-block and
so (〈A,A↑〉a)a = 〈A, A↑〉. Lemma5 now givesA = a →
(a⊗A)↑↓, i.e. A = Ca(A) verifying A ∈ fix(Ca).

Remark 1:Suppose we can computefix(Ca) (we will se
later how to do it). By Theorem7 and the above consider-
ations, going throughfix(Ca) and computing for eachA ∈
fix(Ca) the corresponding[〈A,A↑〉a, 〈A, A↑〉] = [〈(a⊗A)↑↓,
a → A↑〉, 〈A,A↑〉] generates alla≈-blocks ofB (X, Y, I)/a≈.

Remark 2:Strictly speaking, proceeding the just-described
way, we do not generate thea≈-blocks [c1, c2] ∈
B (X, Y, I)/a≈, i.e. we do not generatea≈-blocks [c1, c2]
as collections of formal concepts[c1, c2] = {〈A,B〉 | c1 ≤
〈A,B〉 ≤ c2}. For us, generating aa≈-block [c1, c2] means
generating the boundary formal conceptsc1, c2 ∈ B (X, Y, I).
This is, however, in acordance with the purpose of the fac-
torization ofB (X, Y, I): We are looking for a granular view
which is more concise thanB (X, Y, I) itself.

Let us turn to the problem of generatingfix(Ca). To this
end, we can use the algorithm for generating all formal
concepts of a given fuzzy context described in[4]. Indeed,
the algorithm described in[4] generates extents of all formal
concepts fromB (X,Y, I). Now, the extents of formal con-
cepts are exactly the fixed points of a fuzzy closure operator
C defined byC(A) = A↑↓. Furthermore, as one can check, as
the algorithm uses only properties of fuzzy closure operators,
it is in fact an algorithm for generating the set of fixed points
of a fuzzy closure operator. Adapting the algorithm for our
situation and taking in account Remark1, we get the following
algorithm for computinga≈-blocks [c1, c2], i.e. elements of
B (X, Y, I)/a≈:

SupposeX = {1, 2, . . . , n}; L = {0 = a1 < a2 < · · · <
ak = 1} (the assumption thatL is linearly ordered is in fact
not essential). Fori, r ∈ {1, . . . , n}, j, s ∈ {1, . . . , k} we put

(i, j) ≤ (r, s) iff i < r or i = r, aj ≥ as.

In the following, we will freely refer toai just by i, thus not
distinguish betweenX × L and{1, . . . , n} × {1, . . . , k}, i.e.
we denote(i, aj) ∈ X × L also simply by(i, j).

For A ∈ LX , (i, j) ∈ X × L, put

A⊕ (i, j) := Ca((A ∩ {1, 2, . . . , i− 1}) ∪ { aj
/
i}).

Here,A∩{1, 2, . . . , i−1} is the intersection of a fuzzy setA
and the ordinary set{1, 2, . . . , i− 1}, i.e. (A ∩ {1, 2, . . . , i−
1})(x) = A(x) for x < i and (A ∩ {1, 2, . . . , i− 1})(x) = 0
otherwise. Furthermore, forA,C ∈ LX , put

A <(i,j) C iff A ∩ {1, . . . , i− 1} = C ∩ {1, . . . , i− 1}
andA(i) < C(i) = aj .

Finally,

A < C iff A <(i,j) C for some(i, j).



The algorithm is based on the following theorem (see[4]).

Theorem 8:The least fixed pointA+ which is greater (w.r.t.
<) than a givenA ∈ LX is given by

A+ = A⊕ (i, j)

where(i, j) is the greatest one withA <(i,j) A⊕ (i, j).

The algorithm for generatinga≈-blocks follows.

INPUT: 〈X, Y, I〉 (data table with fuzzy attributes),a ∈ L
(similarity threshold)
OUTPUT:B (X,Y, I)/a≈ (a≈-blocks [c1, c2])

/* Algorithm */
A := ∅
while A 6= X do

A := A+

store( [〈(a⊗A)↑↓, a → A↑〉, 〈A,A↑〉])

As argued in[4], generatingfix(Ca) has polynomial time
delay complexity (i.e., given a fixed point, the next one is
generated in time polynomial in terms of size of the input
〈X, Y, I〉 [10]). Since generating aa≈-block
[〈(a⊗A)↑↓, a → A↑〉, 〈A,A↑〉] from A takes a polynomial
time, our algorithm is of polynomial time delay complexity
as well.

III. E XAMPLES AND EXPERIMENTS

Due to the limited scope, we demonstrate our algorithm on
a data table (fuzzy context) from Tab.I for which we consider
various parametersa (threshold) and some characteristics for
comparison. The data table contains countries (objects from
X) and some of their economic characteristics (attributes from
Y ). The original values of the characteristics are scaled to
interval [0, 1] so that the characteristics can be considered as
fuzzy attributes. Tab.II summarizes the effect of our algorithm
and some related characteristics when using Łukasiewicz fuzzy
logical connectives. The whole concept latticeB (X,Y, I)
contains 774 formal concepts, computingB (X,Y, I) using
the polynomial time delay algorithm from[4] takes 2292ms.
The columns correspond to different threshold valuesa =
0.2, 0.4, 0.6, 0.8. Entries “size|B (X,Y, I)/a≈|” contain the
number of a≈-blocks; “naive algorithm (ms)” contain the
time in ms for computingB (X,Y, I)/a≈ by first generating
B (X,Y, I) and subsequently generating thea≈-blocks by
producing [〈A,B〉a, (〈A,B〉a)a]; “our algorithm (ms)” con-
tain the time in ms for computingB (X, Y, I)/a≈ by our
algorithm; “reduction|B (X, Y, I)/a≈|/|B (X, Y, I)|” contain
the reduction factors of the size of the concept lattice; “time
reduction” contain “our algorithm (ms)” divided by “naive
algorithm (ms)” (1/“time reduction” is thus the speedup).
Fig. 1 and Fig.2 contain graphs depicting reduction
|B (X, Y, I)/a≈|/|B (X, Y, I)| and time reduction from
Tab. II .

The example demonstrates that smaller thresholds lead to
larger reduction (in time and size of the concept lattice).
Furthermore, we can see that the time needed for computing

TABLE I

DATA TABLE (FUZZY CONTEXT).

1 2 3 4 5 6 7
1 Czech 0.4 0.4 0.6 0.2 0.2 0.4 0.2
2 Hungary 0.4 1.0 0.4 0.0 0.0 0.4 0.2
3 Poland 0.2 1.0 1.0 0.0 0.0 0.0 0.0
4 Slovakia 0.2 0.6 1.0 0.0 0.2 0.2 0.2
5 Austria 1.0 0.0 0.2 0.2 0.2 1.0 1.0
6 France 1.0 0.0 0.6 0.4 0.4 0.6 0.6
7 Italy 1.0 0.2 0.6 0.0 0.2 0.6 0.4
8 Geramny 1.0 0.0 0.6 0.2 0.2 1.0 0.6
9 UK 1.0 0.2 0.4 0.0 0.2 0.6 0.6
10 Japan 1.0 0.0 0.4 0.2 0.2 0.4 0.2
11 Canada 1.0 0.2 0.4 1.0 1.0 1.0 1.0
12 USA 1.0 0.2 0.4 1.0 1.0 0.2 0.4

attributes: 1 - Gross Domestic Product per capita (USD), 2 - Consumer
Price Index (1995=100) , 3 - Unemployment Rate (percent - ILO), 4 -
Production of electricity per capita (kWh), 5 - Energy consumption per
capita (GJ), 6 - Export per capita (USD), 7 - Import per capita (USD)

TABLE II

ŁUKASIEWICZ FUZZY LOGICAL CONNECTIVES, B (X, Y, I) OF DATA FROM

TAB . I : |B (X, Y, I)| = 774, TIME FOR COMPUTINGB (X, Y, I) = 2292

MS; TABLE ENTRIES FOR THRESHOLDSa = 0.2, 0.4, 0.6, 0.8.

0.2 0.4 0.6 0.8
size |B (X, Y, I)/a≈| 8 57 193 423
naive algorithm (ms) 8995 9463 8573 9646
our algorithm (ms) 23 214 383 1517
reduction|B (X, Y, I)/a≈|/|B (X, Y, I)| 0.010 0.073 0.249 0.546
time reduction 0.002 0.022 0.044 0.157

the factor latticeB (X,Y, I)/a≈ is smaller than time for
computing the original concept latticeB (X, Y, I)

Tab. III , Fig. 3, and Fig.4 show the same characteriztics
when using the minimum-based fuzzy logical operations.

Finally, we demonstrate the effects on an example of data
table from Tab.IV with a finer distribution of thresholds,a =
0.1, 0.2, . . . , 0.9. Using Łukasiewicz fuzzy logical operations,
the characteristics are the same as for the above example and
are depicted in Fig.5 and Fig.6.
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Fig. 1. Reduction|B (X, Y, I)/a≈|/|B (X, Y, I)| from Tab.II .
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Fig. 2. Time reduction from Tab.II .

TABLE III

M INIMUM -BASED FUZZY LOGICAL CONNECTIVES, B (X, Y, I) OF DATA

FROM TAB . I : |B (X, Y, I)| = 304, TIME FOR COMPUTINGB (X, Y, I) =

341 MS; TABLE ENTRIES FOR THRESHOLDSa = 0.2, 0.4, 0.6, 0.8.

0.2 0.4 0.6 0.8
size |B (X, Y, I)/a≈| 8 64 194 304
naive algorithm (ms) 1830 1634 3787 4440
our algorithm (ms) 23 106 431 1568
reduction|B (X, Y, I)/a≈|/|B (X, Y, I)| 0.026 0.210 0.638 1.000
time reduction 0.012 0.064 0.113 0.353
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