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Abstract—Formal concept analysis aims at extracting a hier- be considered a granularized version of the original concept
archical structure (so-called concept lattice) of clusters (so-called |attice: Its elements are classes of clusters and the factor lattice
formal concepts) from object-attribute data tables. Animportant 5 smajler. A method of factorization by a so-called compatible

problem in applications of formal concept analysis is a possibly . . .
large number of clusters extracted from data. Factorization is one reflexive and symmetric relation (a tolerance) on the set of

of the methods being used to cope with the number of clusters. We clusters was described [@]. Interpreting the tolerance relation
present an algorithm for computing a factor lattice of a concept as similarity on clusters/concepts, the elements of the factor
lattice from the data and a user-specified similarity thresholda. |attice are classes of pairwise similar clusters/concepts. The
The factor lattice is smaller than the original concept lattice and g cification of the tolerance relation is, however, left to the
its size depends on the similarity threshold. The elements of the . .
factor lattice are collections of clusters which are pairwise similar uger. In[2], a parametnzed method of factorization for P'ata,
in degree at leasta. The presented algorithm computes the factor With fuzzy attributes was presented: the tolerance relation is
lattice directly from the data, without first computing the whole induced by a threshold (parameter of factorization) specified
concept lattice and then computing the collections of clusters. We hy a user. Using a suitable measure of similarity degree of
present theoretical insight and examples for demonstration. clusters/concepts (see later), the method does the following.
Given a threshold: (e.g. a number fronjo, 1]), the elements
_ of the factor lattice are similarity blocks determined by
A. Problem Setting (maximal collections of formal concepts which are pairwise
Formal concept analysis (FCAP] is a method of ex- similar in degree at least). The smallera, the smaller the
ploratory data analysis which aims at extracting a hierarchidaktor lattice (i.e. the larger the reduction). In the extreme cases
structure of clusters from object-attribute data tables. The= 0 ora = 1, the factor lattice degenerates and contains just
clusters(A, B), called formal concepts, consist of a collectiomne element (for. = 0) or is the same (up to an isomorphism)
A (concept extent) of objects and a collectiéh (concept as the original concept lattice (far= 1). Fora between 0 and
intent) of attributes. Formal concepts can be partially orderdd the factor lattice provides a granular view on the original
by a natural subconcept-superconcept relation. The resultcwncept lattice (granules are the similarity blocks).
partially ordered set, called a concept lattice, can be visualizedn order to compute the factor lattice (directly by definition),
by a labeled Hasse diagram. The extent-intent definition we have to compute the whole concept lattice (this can be
formal concepts goes back to traditional Port-Royal logidone by an algorithm with a polynomial time delay, $é8
Alternatively, formal concepts can be thought of as maxand then compute all the similarity blocks, i.e. elements of the
mal rectangles contained in object-attribute data table. Tfaetor lattice (again, this can be accomplished by an algorithm
attributes can be binary (0/1), fuzzy (degrees e.g. in [0,1], thevith polynomial time delay, see later).
the clusters are fuzzy as well), or more general, see[®8lg. In this paper, we present a way to compute the factor
[2], [5], [12]. lattice directly from data (input: data table and user-specified
FCA has been applied in various fields, for instance ithresholda; output: factor lattice, i.e. similarity blocks given
software engineering, reengineering problems (redesign mf a). The resulting algorithm is significantly faster than
hierarchical structures), text classification (analyzing e-maibmputing first the whole concept lattice and then computing
collections, classification of library items), psychology (dethe similarity blocks.
velopment of concepts by children), civil engineering (system The paper is organized as follows. SectieB is a brief
for checking dependencies in regulations), classification asdrvey of related work. SectionC presents preliminaries on
systematizing of heuristic methods, physiology (color percefuzzy sets and formal concept analysis of data with fuzzy
tion), preprocessing of data for reduction; gé¢ [8], [13], attributes. In Sectiorl we present our approach. Sectibh
[15] and[9] for references and further applications. presents experiments and demonstrates the speed-up.
A direct user comprehension and interpretation of the par-
tially ordered set of clusters (concept lattice) may be difficuf- Related work
due to a possibly large number of clusters extracted fromDue to the limited scope, we only briefly mention: A variety
the data table. A way to go is to consider, instead of thef methods to help to reduce/manage the size of a concept
whole concept lattice, its suitable factor lattice which calattice is presented iff9]. Except of the above-mentioned

|I. PROBLEM SETTING AND PRELIMINARIES


khadraoui
AISTA 2004 in Cooperation with the IEEE Computer Society Proceedings / ISBN : 2-9599776-8-8 
15-18 November, Kirchberg - Luxembourg


factorization, there are several methods of decompositidit (z) is the truth degree of the fact‘has all attributes from
described in[9]. A method based on selection (by user) oB”. Putting

relevant attributes and dealing with only the corresponding

part of a concept lattice is presented . In [6], the authors B(X,Y,I)={{A,B) | A'=B, B! = A},

face the problem of a large concept lattice by computlr@ X,Y,I) is the set of all pairsA, B) such that (2)A is
and visualizing only its relevant local part which is used fCirhe collection of all objects that have all the attributes of (the
browsing based on a user query. intent) B and (b) B is the collection of all attributes that
C. Preliminaries are shared by all the objects of (the extedt) Elements of
Fuzzy sets and fuzzy logic B (X,Y,I) are called formal concepts ¢X,Y, I) (interesting

We assume basic familiarity with fuzzy logic and fuzzyflusters in data)i3 (X, Y, I) is called the concept lattice given
sets [11] An e|ement may be|ong to a fuzzy set in arby <X, 5/7 I> (CO”eCtion Of all interesting CIUSterS). BOth the
intermediate degree not necessarily being 0 or 1. Formafxtent A and the intentB of a formal concept(A, B) are
a fuzzy setA in a universeX is a mapping assigning to In general fuzzy sets and represent collections of objects and
eachz € X a truth degreed(z) € L where L is some attributes which are covered by the concept.
partially ordered set of truth degrees containing at lgéast Putting
(full falsity) and 1 (full truth). L needs to be equipped with . .
logical connectives, e.g® (fuzzy conjunction),— (fuzzy (A1, Br) < (A1, By) iff Ay € Ao(if B1 2 Ba) - (3)
implication), etc.L together with logical connectives formss, (A1,By),(As,B;) € B(X,Y,I), < models the
a structureL, of truth degrees. We assume thatforms a gypconcept-superconcept hierarchy B X, Y, I). That is,
so-called residuated lattice in which arbitrary infilaand peing more general means to apply to a larger collection of

suprema/ exist. objects and to cover a smaller collection of attributes.

‘The most aPP'ied set of truth values is the real intejval ; The following is a part of characterization of the structure
with a A b = min(a,b), a Vb = max(a,b), and with three of fuzzy concept lattices, s€8].

important pairs of fuzzy conjunction and fuzzy implication:

tukasiewicz ¢ ® b = max(a +b —1,0), a — b = min(1 — Theorem 1:The setB(X,Y,I) is under < a complete
a+b,1)), minimum @®b = min(a,b), a—b=1if a <b lattice where infima and suprema are given by

and= b else), and product(®b=a-b,a - b=1if a <b

and = b/a else). Another possibility is to take a finite chain N (4:B) = (A4, (U B)"), (4)
{ag = 0,a1,...,an, = 1} (ap < --- < a,) equipped with i€d = =
tukasiewicz structurea, ® a; = Gmax(k+i—n,0) U — A = \/ (Aj,B;) = <(U AHT ﬂ B;) . (5)
Umin(n—k+1,n)) OF MINIMUM @k ® a; = Qin(k,1), & — @ = jed jed jed
a, for ap < a; anday, — a; = a; otherwise).

The set of all fuzzy sets (dk-sets) inX is denotedLX. Il. FAST FACTORIZATION BY SIMILARITY

For fuzzy setsA, B in X we put A C B (A is a subset of
B) if for eachz € X we haveA(x) < B(x). More generally,
the degreeS (A, B) to which A is a subset ofB is defined In this section, we recall the parametrized method of factor-
by S(A,B) = /\zex A(x) — B(x). Then,A C B means ization introduced 2] to which we refer for details. Given
S(A,B)=1. a fuzzy context X, Y, I), introduce a binary fuzzy relatios

on the setB (X, Y, I) of all formal concepts of X, Y, I) by

A. Factorization by similarity

Formal concept analysis of data with fuzzy attributesLet
X andY be sets of objects and attributes, respectivélipe ((A1, By) ~ (As, Bs)) /\ Ay (z) & Ay(z)
a fuzzy relation betweeX andY. Thatis,I : X xY —

L assigns to eaclr € X and eachy € Y a truth degree
I(z,y) € L to which objectz has attributey. The triplet for (4i, Bi) € B(X,Y,I), i = 1,2, where/\ is the infimum
(X,Y,I) is called a formal fuzzy context (a data table witdMinimum in most cases) and- is a connective of fuzzy

zeX

fuzzy attributes). equivalence defined by <~ b = (a — b) A (b — a).
For fuzzy setsA € LX and B € LY, define fuzzy sets ({41, B1) = (A2, B,)) is called the degree of similarity of
Al e LY andB! € LX by (A1, By) and(Aq, Bo). It is easily seen that it is just the truth
degree of “for each object: x is covered byA; iff x is
Aly) = N\ (A@@) = I(z,y)) (1) covered byA,”. It can be shown that
rzeX
and ({(A1, By) = (A2, By)) /\ Bi(y) < Ba(y).
Bl(z) = A (B(y) = I(z,y)). (2) yey
yey

Therefore, measuring similarity of formal concepts via extents
Using basic rules of predicate fuzzy logid, (y) is the truth A; coincides with measuring similarity via intenf$;, corre-
degree of the facty is shared by all objects froml” and sponnding to the duality of extent/intent view.



Given a truth degree < L (a threshold specified by a user)B. Computing the factor lattic8 (X,Y, I)/*~ directly from
consider the thresholded relatiér: on B (X, Y, I) defined by input data
((A1, By), (Ag, By)) € °~  iff In order to computeB (X,Y,I)/*~ using definition and_
(A1, B) ~ (A3, Bs)) > a. Lemma?2, one has (1) to compute the whole concept lattice
b=t 2= B(X,Y,I)and then (2) to computé=-blocks onB (X, Y, I),
That is,*~ is the relation “being similar in degree at lea$t which can be quite demanding. We are going to propose a
“~ is reflexive and symmetric, but need not be transitive (itay to computeB (X, Y, I)/*~ directly from input data. It
is transitive ifa®b = a A b holds true inL, i.e. if we use will turn out that our algorithm has a polynomial time delay
minimum as fuzzy conjunction). Call a subgebf B (X,Y,I) (see[10]).
a %~-block if it is a maximal subset of53 (X,Y,I) such We need some auxiliary results. For basic properties of
that each two formal concepts frof are similar in degree fuzzy concept lattices we refer e.g. [8], [3]. For a fuzzy
at leasta (the notion of a®~-block generalizes that of ansetC in U anda € L, the fuzzy setss — C anda® C in U
equivalence class: if~ is an equivalence relatiofiz-blocks are defined bya — C)(u) = a — C(u) and (a® C)(u) =
are exactly the equivalence classes). DenotBbY,Y, 1)/~ a® C(u) for eachu € U. For fuzzy setsC, D in U, put
the collection of all*~-blocks. (C = D) = A\yep C(u) < D(u). Furthermore, we call a
It can be shown that~ are special intervals in the concepfuzzy setA in X an extent if there is a fuzzy sé& in Y such
lattice B (X, Y, I). In detail, for a formal concept4, B) € that (A, B) € B(X,Y,I) (similarly, B is an intent if there is
B(X,Y,I), put A with (A, B) € B(X,Y,1)).
(A,B), = /\{(A’,B’> | ((A,B),(A",B")) € °~} Lemma 4:1f A is an extent then so is — A; similarly, if
B is an intent then so is — B.
Proof: We prove the assertion for extents. L&tbe an
(A,B)" = \/{{4".B) | ((A,B),(A',B)) € "~}. extent, i.e.(A,B) € B(X,Y,I) for some B. We have to

That is (A, B), and (A, B)* are the infimum and the supre-SNoW that(a — A, B') € B(X,Y,I). Itis easy to see that

mum of the set of all formal concepts which are similar t§ Suffices to show that — A = (a — A)T (since then
(A, B) in degree at least. ..., and...* are important in

{a — A, (a — A)") is a formal concept). Since — A C
description of*a-blocks. Namely, we have the following.

and

(a — A)T! is always the case, we have to shew— A)TH C
_ a — A which holds iff (a — A)ll(z) < a — A(z) for
Lemma 2:“~-blocks are exactly intervals & (X, Y, I) of  g4ch, ¢ X. Using adjointness, the latter is equivalent to
the form[{A, B),,, ({4, B),)“], i.e. a < (a— A (z) - A(z). Since(a — A)TH(z) — A(z) >
B(X,Y, )/~ = Neex(@— AN (z) ﬁ(x) = ((a — ATt ~ A), it suffices
a to showa < ((a — A)'+ = A) which can be shown using
Note that an interval with lower boun@,, B1) and upper strajghtforward verification. n

bound(A,, Bs) is the subset
The next lemma shows that for a formal concégt B),

[(A1, B1), (A2, B2)] = (A,B), and (A, B)" (defined as infimum and supremum of
{(4,B) | (A1, B;1) < {(A,B) < (A2,B3)}. all formal concepts similar tdA, B) in degree at least) can
Now, define a partial order on blocks of B (X,Y,I)/%~ be computed from{A, B) directly.

by Lemma 5:For (A,B) € B(X.,Y,I), we have (a)

[c1,c0] = [d1,da] iIff ¢ <dyi(iff c2 < d2) (A,B), = {(a®A)",a— B) and (b) (4,B)" =

n i ((a—A),(a® B)).

WherE[Cl,CQL[dl,dQ] S B(X,Y,I)/ ~, i.e.cy,co,dy,dy are . . .
suitable formal concepts frolf (X, Y, I) andc; < d; denotes Proof: Due to duallty we verify only (a). First, one can
that in B (X, Y, I), ¢; is under (a subconcept of). Then we Show that (al)(a® A)'! is an extent of a formal concept
have {(a® A)T, D) which is similar to(A, B) in degree at least

" _ L . a, and (a2) if (C, F') is a formal concept similar t4qA, B)
Theorem 3:5 (X, Y, I)/*~ equipped with= is a partially i, gegree at least then ((a @ A)'!, D) < (C, F). It remains
ord.ered set which is a .co.mpllete lattice, the so-called factf chow D — « — B. To this end, it is sufficient to see that
lattice of 5 (X, Y, I) by similarity ~ and a threshold. (a3) a — B is an intent of a concept which is similar to
Elements of3 (X,Y, I) /*~ can be seen as similarity-based A, B) in degree at least, and (a4) if (C, F') is a concept
granules of formal concepts/clusters fra( X, Y, I). similar to (A, B) in degree at least thenc < (C, F). Indeed,
B (X,Y,I)/*~ thus provides a granular view on (the possibljrom (a3) and (a4) it follows that — B is the intent of the
large) B (X, Y, I). Note also that if'~ is transitive then it is a least formal concept similar t9A, B) in degree at least,
congruence relation o8 (X,Y,I) andB(X,Y,I)/*~ is the i.e.a — B = D. We verify (a3) and (a4). (a3): By Lemma
usual factor lattice modulo a congruence. For further details— B is an intent. Using adjointness we easily get (B =~
and properties oB (X,Y, I)/%~ we refer to[2]. a — B) = ({(A, B) = ¢), proving (a3). (a4): We need to show



~
~

F Ca— B.Sincea < ((A,B) = (C,F)) = (B = F),
adjointness gives ® F' C B and thenF' C a — B, proving

(ad). The proof is complete.

Thus we have
(a— (a@ AN, (a®(a — B))').

Lemma 6:For (A,B) € B(X,Y,I) we have(4,B),
(((4, B)4)")a-

Proof: First we show that for every formal concepts
andd we have (1)c < d impliesc, < dq, (2) ¢ < d implies
c® < d* (3) c < () (4) ¢ > (¢*)q. (1): Recall thate, =
N f e B(X,Y,I) | {c, f) € “~}. We need to show that if
(d, fy € *~ thenc, < f. Thus supposéd, f) € *~. From
(¢, c) € *~ and from the fact thet~ is a compatible tolerance way, we do not generate th@~-blocks [ci,cs] €
on B(X.Y,I) we geta < {end,cnf)={c.cAf)and so B(X,Y,I)/%=, i.e. we do not generaté=-blocks [c1, c2]
fzen = ca proving (1). (2) can be proved analogously,s" ¢ ojjections of formal concepts;,co] = {{A,B) | ¢1 <
(B)L:Pg (jl)&reBt;b\g;)/u(sé) ¢ < (ca)® and socs < ((ca)®) (A, By < co}. For us, generating &-block [c1, ca] means
by (1 ; | o "y = at S ¢ = e/ e generating the boundary formal concepisc, € B (X, Y, I).

y (2). pplying (4) toc, we getca > ((ca)®)as PIOVING  Tpic™ic “however, in acordance with the purpose of the fac-
¢a = ((¢a)*)a- torization of B (X,Y, I): We are looking for a granular view

By Lemmas, if a “~-block [c1, c2] is generated byA, B) €  which is more concise thaBi (X, Y, I) itself.
B(X,Y,I),i.e.c; = (A,B),, c2 = ({(A,B),)" thenitis also
generated by, i.e.c; = (c2), andea = ((c2)q)?

Therefore,*~-blocks [c1, c2] are uniquely given by their
supremac,. Moreover, since each formal concept= (4, B)
is uniquely given byA (namely, B = A'), “~-blocks are
uniquely given by extents of their suprema. Therefore, den
the set of all extents of suprema ©-blocks byESB(a), i.e.

ESB(a) = {A € L* | (A,B) € B(X,Y,I) and

Second, we verifyfix(C,) = ESB(a). Let A € fix(C,).
Then A = C,(A) a — (a®A)T. By Lemma 5,
[(4, A1), (A, AT)] is a “~-block and soA is the extent of
a supremum of a block, i.eA € ESB(a). Conversely, let
A € ESB(a). Then[(A, AT),, (4, AT)] is an “~-block and
so ((A,AT),)* = (A, AT). Lemmab now givesA = a —
(a® A, ie. A= C,(A) verifying A € fix(C,). ]

Remark 1:Suppose we can compufix(C,) (we will se
later how to do it). By TheorenY and the above consider-
ations, going througHix(C,) and computing for eacki €
fix(C,) the corresponding(A, AT),, (4, A")] = [((a® A)™!,

a — A"), (A, A1)] generates alt~-blocks of B (X, Y, I)/%~.

Remark 2: Strictly speaking, proceeding the just-described

({4, B),)"

Let us turn to the problem of generatirfix(C,). To this
end, we can use the algorithm for generating all formal
concepts of a given fuzzy context described[4}. Indeed,
the algorithm described if] generates extents of all formal
gancepts fromB (X,Y,I). Now, the extents of formal con-
ote : :
cepts are exactly the fixed points of a fuzzy closure operator
C defined byC(A) = AL, Furthermore, as one can check, as
the algorithm uses only properties of fuzzy closure operators,
(A, B),, (A, B)] € B(X,Y,I)/%}. it is in fact an algorithm for generati_ng the set of_fixed points
) ) of a fuzzy closure operator. Adapting the algorithm for our
We are going to present the main result. et A — C(A)  gjtuation and taking in account Remarkwe get the following

be a mapping (assigning a fuzzy €fA) in X to a fuzzy gigorithm for computing~-blocks [c1, c2], i.e. elements of
setA in X). A fixed point of C' is any fuzzy setd in X such

B(X,Y,I)/*~:

that A = C(A). Let fix(C') denote the set of all fixed points  gypposex = {(1,2,...n L={0=a; <ay < - <

of C, i.e.
fix(C) ={Ac L™ | A=C(A)}.

Recall (see e.d4]) thatC is called a fuzzy closure operator

in X if

AcCC(4A) (6)
S(A1, Az) < S(C(A1),C(Az)) ()
C(A)=c(Cc(A)) 8)

forany A, Ay, A, € LX.

Theorem 7:Given input data X, Y, I) and a threshold €
L, a mappingC, sending a fuzzy se#l in X to a fuzzy set
a — (a®A)™ in X is a fuzzy closure operator iX for
which fix(C,) = ESB(a).

Therefore,A is a fixed point ofC, if and only if A is the
extent of some formal concept which is the supremum of
some®~-block [c1,co] € B(X,Y,I)/%.

Proof: First, one can verify that,, is a fuzzy closure

operator (we omit the proof and refer to a forthcoming paper).

ar, = 1} (the assumption thak is linearly ordered is in fact
not essential). Fot,r € {1,...,n}, j,s € {1,...,k} we put

(i,7) < (r,s) |Iff

In the following, we will freely refer toa; just by, thus not
distinguish betweerX x L and{1,...,n} x {1,...,k}, i.e.
we denote(i, a;) € X x L also simply by(i, 7).

For Ae L, (i,j) € X x L, put

A@(i,§) = Co((AN{L,2,...,i — 1} U {4 /i}).

Here,AN{1,2,...,i—1} is the intersection of a fuzzy set
and the ordinary sefl,2,...,i— 1}, i.e. (AN{1,2,...,i—
1P)(x) = A(z) forx <iand (AN {1,2,...,i—1})(x) =0
otherwise. Furthermore, fod, C € LX, put
A<y Ciff An{l,...,i—1}=Cn{L,...,i—1}
and A(i) < C(i) = a;.

1<r Of 1=7,a; > Q.

Finally,
A<C iff A<y C for some(i, j).



TABLE |

The algorithm is based on the following theorem (§€8. DATA TABLE (FUZZY CONTEXT)

Theorem 8:The least fixed pointi* which is greater (w.r.t.

: At 1 2 3 4 5 6 7
<) than a givend € LX is given by TCzech |04 04 06 02 02 04 02
L . 2Hungary | 04 10 04 00 00 04 02
AT =A®(i,]) 3Poland | 02 1.0 1.0 00 00 00 00

4 Slovakia | 0.2 06 10 00 02 02 0.2
5 Austria 1.0 00 02 02 02 10 10
6 France 10 00 06 04 04 06 06

where (7, j) is the greatest one with <(; ;) A® (4, j).

The algorithm for generatin@~-blocks follows.

7 ltaly 10 02 06 00 02 06 04
8 Geramny| 1.0 00 06 02 02 10 0.6
INPUT: (X,Y,I) (data table with fuzzy attributesy, € L 9 UK 10 02 04 00 02 06 06
(Smilarty hreshol) lodpm | 13 00 04 02 02 04 02
OUTPUT: B (X, Y, I)/*~ (“~-blocks [c1, c2]) 12USA |10 02 04 10 10 02 04
/* Algorithm */ attributes: 1 - Gross Domestic Product per capita (USD), 2 - Consumer
A:=0 Price Index (1995=100) , 3 - Unemployment Rate (percent - ILO), 4 -
. Production of electricity per capita (kWh), 5 - Energy consumption per
while Ajé X do capita (GJ), 6 - Export per capita (USD), 7 - Import per capita (USD)
A=A
store( [{(a® A)TH a — AT) (A, AT)]) TABLE I

LUKASIEWICZ FUZZY LOGICAL CONNECTIVES, B (X, Y, I) OF DATA FROM

As argued In[4]’ generatlngﬁx(ca) has polynomlal tlme TAB. |: |B(X, Y, I) = 774, TIME FOR COMPUTINGB (X, Y, I) =2292
delay complexity (i.e., given a fixed point, the next one is  MS: TABLE ENTRIES FOR THRESHOLDS: = 0.2,0.4,0.6,0.8.

generated in time polynomial in terms of size of the inpyt

0.2 0.4 0.6 0.8

(X,Y,I) [10]). Since generating &~-block _ size|B(X, Y, 1)/°~] 8 57 193 423
[((a® AT, a — AT), (A, AT)] from A takes a polynomial | naive algorithm (ms) 8995 9463 8573 9646
; ; i ; ; ing our algorithm (ms) 23 214 383 1517
time, our algorithm is of polynomial time delay complexity reduction|B (X, Y I)/*~|/|6 (X,Y.T)| | 0010 0073 0249 0.54%
as well. time reduction 0002 0022 0.044 0.15]

IIl. EXAMPLES AND EXPERIMENTS

Due to the limited scope, we demonstrat.e our algori_thm We factor lattice B(X,Y,I)/*~ is smaller than time for
a dgta table (fuzzy context) from Tabfor which we co.ns'lder computing the original concept lattid (X, Y, T)
various parameters (threshold) and some characteristics for Tab. Il Fia. 3. and Fia.4 show the same characteriztics
comparison. The data table contains countries (objects fro - G- 2 g

X) and some of their economic characteristics (attributes frovr\lr?]e.n using the minimum-based fuzzy logical operations.
Finally, we demonstrate the effects on an example of data

.Y)' The original values of the char_acterlstlcs are S.C&|Ed ttgble from TablV with a finer distribution of thresholds, =
interval [0, 1] so that the characteristics can be considered & 0.2 0.9. Using t ukasiewicz fuzzy logical operations

fuzzy attributes. Tabll summarizes the effect of our algorithm .
I . oS the characteristics are the same as for the above example and

and some related characteristics when using tukasiewicz fuzazryé depicted in Fios and Fia.6
logical connectives. The whole concept lattit( XY, I) P g 9.5
contains 774 formal concepts, computiy X,Y,I) using
the polynomial time delay algorithm fronfa] takes 2292ms. o
The columns correspond to different threshold values= ~ Radim Eelohlavek gratefully acknowledges support by grant
0.2,0.4,0.6,0.8. Entries “size|B (X,Y,I)/*~|" contain the No. 201/02/P076 of the Grant Agency of the Czech Republic.
number of “~-blocks; “naive algorithm (ms)” contain the
time in ms for computing3 (X, Y, I)/*~ by first generating
B(X,Y,I) and subsequently generating tHe:-blocks by
producing [(A, B),, ((A, B),)*]; “our algorithm (ms)” con-
tain the time in ms for computing (X,Y,I)/%~ by our
algorithm; “reduction|B (X, Y, I)/%~|/|B(X,Y, I)|" contain
the reduction factors of the size of the concept lattice; “time
reduction” contain “our algorithm (ms)” divided by “naive
algorithm (ms)” (1/“time reduction” is thus the speedup).
Fig. 1 and Fig.2 contain graphs depicting reduction
|B(X,Y,I)/*~|/|B(X,Y,I)| and time reduction from
Tab. .

The example demonstrates that smaller thresholds lead to T
larger reduction (in time and size of the concept lattice).
Furthermore, we can see that the time needed for computing Fig. 1. ReductionB (X,Y,I)/*~|/|B(X,Y,I)| from Tab.lI.
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Fig. 2. Time reduction from Tabl.

TABLE Il

MINIMUM -BASED FUZZY LOGICAL CONNECTIVES B (X, Y, I) OF DATA
FROMTAB. |: |B(X,Y,I)| = 304, TIME FOR COMPUTINGB (X,Y,I) =

341MS; TABLE ENTRIES FOR THRESHOLDS: = 0.2,0.4,0.6,0.8.

0.2 0.4 0.6 0.8
size|B(X,Y,I)/°~] 8 64 194 304
naive algorithm (ms) 1830 1634 3787 4440
our algorithm (ms) 23 106 431 1568
reduction|B (X,Y,I)/%~|/|B(X,Y,I)| | 0.026 0.210 0.638 1.00(
time reduction 0.012 0.064 0.113 0.35%
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