
Journal of Computer and System Sciences 73 (2007) 1012–1022

www.elsevier.com/locate/jcss

Fast factorization by similarity in formal concept analysis of data
with fuzzy attributes

Radim Belohlavek a,b,∗, Jiří Dvořák b, Jan Outrata b

a Department of Systems Science and Industrial Engineering, Binghamton University, SUNY, Binghamton, NY 13902, USA
b Department of Computer Science, Palacký University, Tomkova 40, CZ-779 00 Olomouc, Czech Republic

Received 6 March 2006; received in revised form 24 March 2007

Available online 31 March 2007

Abstract

We present a method of fast factorization in formal concept analysis (FCA) of data with fuzzy attributes. The output of FCA
consists of a partially ordered collection of clusters extracted from a data table describing objects and their attributes. The collection
is called a concept lattice. Factorization by similarity enables us to obtain, instead of a possibly large concept lattice, its factor
lattice. The elements of the factor lattice are maximal blocks of clusters which are pairwise similar to degree exceeding a user-
specified threshold. The factor lattice thus represents an approximate version of the original concept lattice. We describe a fuzzy
closure operator the fixed points of which are just clusters which uniquely determine the blocks of clusters of the factor lattice. This
enables us to compute the factor lattice directly from the data without the need to compute the whole concept lattice. We present
theoretical solution and examples demonstrating the speed-up of our method.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Tabular data; Clustering; Formal concept analysis; Fuzzy attributes; Similarity; Factorization

1. Problem setting

Finding interesting and well-interpretable groups in data is a challenging goal. Formal concept analysis (FCA)
is a method of exploratory data analysis which aims at extracting a hierarchical structure of clusters from tabular
data describing objects and their attributes [9]. The history of FCA goes back to Wille’s paper [15], foundations,
algorithms, and a survey of applications can be found in [7]. Recently, there appeared interesting applications of FCA
as a data analysis method, see e.g. [1,8,12,13], as well as a data preprocessing method, see e.g. [14,18].

Clusters in FCA are particular pairs 〈A,B〉 consisting of a collection A of objects and a collection B of attributes
which are maximal with respect to the property that each object from A has every attribute from B . Since this ap-
proach corresponds to Port–Royal idea of a concept consisting of its extent (objects covered by the concept) and its
intent (attributes covered by the concept), clusters 〈A,B〉 are called formal concepts. Formal concepts can be partially
ordered by a subconcept–superconcept hierarchy (narrower clusters are under larger ones). The resulting partially
ordered set of clusters forms a complete lattice, called a concept lattice, and can be visualized by a labeled Hasse dia-

* Corresponding author.
E-mail addresses: rbelohla@binghamton.edu (R. Belohlavek), jiri.dvorak@upol.cz (J. Dvořák), jan.outrata@upol.cz (J. Outrata).
0022-0000/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2007.03.016

R. Belohlavek et al. / Journal of Computer and System Sciences 73 (2007) 1012–1022 1013
gram. In basic setting, the input data table contains bivalent attributes, i.e. each table entry contains either 0 or 1. More
general attributes are handled by so-called conceptual scaling [9]. Recently, FCA was extended to data tables with
fuzzy attributes, i.e. tables with entries containing degrees to which a particular attribute applies to a particular object.
Then, the constituents A and B of a formal concept 〈A,B〉 are fuzzy sets rather than bivalent sets, see e.g. [4,5,11].

In [2], a method of parameterized factorization of concept lattices computed from data tables with fuzzy attributes
is presented. A user supplies a similarity threshold a (parameter) and the method outputs, instead of the whole concept
lattice which might be large, its factor lattice. The elements of the factor lattice are maximal blocks of clusters from
the whole concept lattice which are pairwise similar to degree at least a. For a user, the factor lattice provides a coarser
version of the whole concept lattice—the less the similarity threshold a, the coarser. In order to compute the factor
lattice directly by definition, we have to compute the whole concept lattice (this can be done by an algorithm with a
polynomial time delay, see [6]) and then compute all the similarity blocks, i.e. elements of the factor lattice (again,
this can be accomplished by an algorithm with polynomial time delay). In this paper, we present a way to compute
the factor lattice directly from input data. The resulting algorithm is significantly faster than computing first the whole
concept lattice and then computing the similarity blocks. In addition to that, the smaller the similarity threshold, the
faster the computation of the factor lattice. This feature corresponds to a rule “the more tolerance to imprecision, the
faster the result” which is characteristic for human categorization [16,17].

The paper is organized as follows. Section 2 presents preliminaries on fuzzy sets and formal concept analysis of
data with fuzzy attributes. In Section 3 we present our approach. Section 4 presents experiments and demonstrates the
speed-up.

2. Preliminaries

2.1. Fuzzy sets and fuzzy logic

The concept of a fuzzy set generalizes that of an ordinary set in that an element may belong to a fuzzy set in an
intermediate degree not necessarily being 0 or 1. Formally, a fuzzy set A in a universe X [10] is a mapping assigning
to each x ∈ X a truth degree A(x) ∈ L where L is some partially ordered set of truth degrees containing at least 0
(false) and 1 (true). Usually, L is the unit interval [0,1] or some of its subsets. A(x) is interpreted as a degree to
which x belongs to A. The notion of a fuzzy set enables us to model vaguely (nonsharply) delineated collections: For
instance, the collection corresponding to “tall man” can be modeled by a fuzzy set to which men with heights 150 cm,
180 cm, and 200 cm belong to degrees 0, 0.7, and 1, respectively.

The scale L of truth degrees needs to be equipped with suitable operations generalizing logical connectives of
classical (bivalent) logic. Particularly, we will need fuzzy conjunction ⊗ and fuzzy implication →. We assume that the
set of truth degrees and the logical connectives form a complete residuated lattice L [2], i.e. L = 〈L,∧,∨,⊗,→,0,1〉,
where (1) 〈L,∧,∨,0,1〉 is a complete lattice (with the least element 0, greatest element 1), i.e. a partially ordered
set in which arbitrary infima (

∧
, for semantics of general quantifier) and suprema (

∨
, for semantics of existential

quantifier) exist; (2) ⊗ satisfies x ⊗(y ⊗z) = (x ⊗y)⊗z, x ⊗y = y ⊗x, and x ⊗1 = x; (3) ⊗ and → satisfy x ⊗y � z

if and only if x � y → z (adjointness, comes from modus ponens). ⊗ and → are called multiplication and residuum
and play the role of fuzzy conjunction and fuzzy implication, respectively. The most commonly used set L of truth
degrees is the real interval [0,1]; with a ∧ b = min(a, b), a ∨ b = max(a, b), and with three important pairs of fuzzy
conjunction and fuzzy implication: Łukasiewicz (a ⊗ b = max(a + b − 1,0), a → b = min(1 − a + b,1)), minimum
(a ⊗ b = min(a, b), a → b = 1 if a � b and = b else), and product (a ⊗ b = a · b, a → b = 1 if a � b and = b/a

else). Another possibility is to take a finite chain {a0 = 0, a1, . . . , an = 1} (a0 < · · · < an) equipped with Łukasiewicz
structure (ak ⊗al = amax(k+l−n,0), ak → al = amin(n−k+l,n)) or minimum (ak ⊗al = amin(k,l), ak → al = an for ak � al

and ak → al = al otherwise). More generally, taking I = {i1 = 0, . . . , im = n} ⊆ {0, . . . , n} with i0 < · · · < im, one
can define a pair of a fuzzy conjunction and a fuzzy implication by

ak ⊗ al =
{

amax(k+l−ij+1,ij) if k, l ∈ [ij , ij+1],
amin(k,l) otherwise,

ak → al =
⎧⎨
⎩

1 if k � l,

amin(ij+1−k+l,ij+1) if k > l and k, l ∈ [ij , ij+1],

al otherwise.

1014 R. Belohlavek et al. / Journal of Computer and System Sciences 73 (2007) 1012–1022
One can see that for I = {0,1} and I = {0,1, . . . , n} we get the above-mentioned Łukasiewicz and minimum pair,
respectively.

A fuzzy set with truth degrees from L in a universe U (called also an L-set) is a mapping A :U → L assigning to
any u ∈ U a truth degree A(u) ∈ L to which u belongs to A. A fuzzy relation I between sets X and Y is a fuzzy set
in U = X × Y , i.e. I :X × Y → L. The set of all L-sets in a universe U is denoted by LU . For a fuzzy set A ∈ LU

and a truth degree a ∈ L we denote by aA the a-cut of A, i.e. aA = {u ∈ U | A(u) � a} (the ordinary set of elements
from U which belong to A to degree at least a). A fuzzy set A is called crisp if A(u) ∈ {0,1}. Following common
usage we will identify crisp fuzzy sets in U with ordinary subsets of U . For fuzzy sets A,B in U we put A ⊆ B (A is
a subset of B) if for each u ∈ U we have A(u) � B(u). More generally, the degree S(A,B) to which A is a subset
of B is defined by S(A,B) = ∧

u∈U A(u) → B(u). Then, A ⊆ B means S(A,B) = 1.

2.2. Formal concept analysis of data with fuzzy attributes

Let X and Y be sets of objects and attributes, respectively, I be an L-relation between X and Y , i.e. I is a mapping
I :X × Y → L. 〈X,Y, I 〉 is called a data table with fuzzy attributes. 〈X,Y, I 〉 represents a table which assigns to each
x ∈ X and each y ∈ Y a truth degree I (x, y) ∈ L to which object x has attribute y.

For L-sets A ∈ LX , B ∈ LY (i.e. A is an L-set of objects, B is an L-set of attributes), we define L-sets A↑ ∈ LY

(L-set of attributes), B↓ ∈ LX (L-set of objects) by

A↑(y) =
∧
x∈X

(
A(x) → I (x, y)

)
and B↓(x) =

∧
y∈Y

(
B(y) → I (x, y)

)
.

We put

B(X,Y, I) = {〈A,B〉 ∈ LX × LY
∣∣ A↑ = B, B↓ = A

}
and define for 〈A1,B1〉, 〈A2,B2〉 ∈ B(X,Y, I) a binary relation � by 〈A1,B1〉 � 〈A2,B2〉 iff A1 ⊆ A2 (or, iff
B2 ⊆ B1; both ways are equivalent). Operators ↓, ↑ induced by 〈X,Y, I 〉 form a fuzzy Galois connection [4]. The
structure 〈B(X,Y, I),�〉 is called a concept lattice induced by 〈X,Y, I 〉. Elements 〈A,B〉 of B(X,Y, I) are called
formal concepts and are interpreted as concepts/clusters hidden in the input data table. Namely, A↑ = B and B↓ = A

say that B is the collection of all attributes shared by all objects from A, and A is the collection of all objects sharing
all attributes from B . Note that these conditions represent exactly the definition of a concept as developed in Port–
Royal logic; A and B are called extent and intent of the concept 〈A,B〉, respectively, and represent the collection
of all objects and all attributes covered by the particular concept. Furthermore, � is the subconcept–superconcept
hierarchy—concept 〈A1,B1〉 is a subconcept of 〈A2,B2〉 iff each object from A1 belongs to A2 (dually for attributes).
〈B(X,Y, I),�〉 is a complete lattice, see [5] for more information about its structure.

3. Fast factorization by similarity

3.1. Factorization by similarity

In this section, we recall the parametrized method of factorization introduced in [2]. For details, we refer to [2] and
to [9] where a general factorization of complete lattices by tolerance relations is described. Given a data table 〈X,Y, I 〉,
introduce a binary fuzzy relation ≈ on the set B(X,Y, I) of all formal concepts of 〈X,Y, I 〉 by(〈A1,B1〉 ≈ 〈A2,B2〉

) =
∧
x∈X

A1(x) ↔ A2(x)

for 〈Ai,Bi〉 ∈ B(X,Y, I), i = 1,2. Here,
∧

denotes infimum and ↔ is a connective of fuzzy equivalence defined by
a ↔ b = (a → b)∧ (b → a). It is known that ≈ is a fuzzy equivalence relation, i.e. we have (A ≈ A) = 1 (reflexivity),
(A1 ≈ A2) = (A2 ≈ A1) (symmetry), and (A1 ≈ A2) ⊗ (A2 ≈ A3) � (A1 ≈ A3) (transitivity). (〈A1,B1〉 ≈ 〈A2,B2〉)
is called the degree of similarity of 〈A1,B1〉 and 〈A2,B2〉. It is easily seen that it is the truth degree of “for
each object x: x is covered by A1 iff x is covered by A2.” One can show [2] that (〈A1,B1〉 ≈ 〈A2,B2〉) =∧

y∈Y B1(y) ↔ B2(y). Therefore, measuring similarity of formal concepts via extents Ai coincides with measuring
similarity via intents Bi , corresponding to the duality of the extent/intent view.

R. Belohlavek et al. / Journal of Computer and System Sciences 73 (2007) 1012–1022 1015
Given a truth degree a ∈ L (threshold specified by a user), consider the thresholded relation a≈ on B(X,Y, I)

defined by(〈A1,B1〉, 〈A2,B2〉
) ∈ a≈ iff

(〈A1,B1〉 ≈ 〈A2,B2〉
)
� a.

That is, a≈ is the (crisp) relation “being similar to degree at least a.” a≈ is reflexive and symmetric, but need not be
transitive (it is transitive if L satisfies a ⊗ b = a ∧ b). Call a subset B of B(X,Y, I) a a≈-block if it is a maximal
subset of B(X,Y, I) such that each two formal concepts from B are similar to degree at least a (the notion of a a≈-
block generalizes that of an equivalence class: if a≈ is an equivalence relation, a≈-blocks are exactly the equivalence
classes). Denote by B(X,Y, I)/ a≈ the collection of all a≈-blocks.

It can be shown that a≈-blocks are special intervals in the concept lattice B(X,Y, I) [2,9]. In detail, for a formal
concept 〈A,B〉 ∈ B(X,Y, I), put

〈A,B〉a :=
∧{〈A′,B ′〉 ∣∣ (〈A,B〉, 〈A′,B ′〉) ∈ a≈}

, (1)

〈A,B〉a :=
∨{〈A′,B ′〉 ∣∣ (〈A,B〉, 〈A′,B ′〉) ∈ a≈}

. (2)

That is, 〈A,B〉a and 〈A,B〉a are the infimum and the supremum of the set of all formal concepts which are similar to
〈A,B〉 to degree at least a. Then, a≈-blocks can be described as follows.

Lemma 1. a≈-blocks are exactly intervals of B(X,Y, I) of the form [〈A,B〉a, (〈A,B〉a)a], i.e.

B(X,Y, I)/ a≈ = {[〈A,B〉a,
(〈A,B〉a

)a] ∣∣ 〈A,B〉 ∈ B(X,Y, I)
}
.

Note that an interval with lower bound 〈A1,B1〉 and upper bound 〈A2,B2〉 is the subset [〈A1,B1〉, 〈A2,B2〉] =
{〈A,B〉 | 〈A1,B1〉 � 〈A,B〉 � 〈A2,B2〉}.

Now, define a partial order � on blocks of B(X,Y, I)/ a≈ by

[c1, c2] � [d1, d2] iff c1 � d1 (iff c2 � d2),

where [c1, c2], [d1, d2] ∈ B(X,Y, I)/ a≈ (ci � di denotes that in B(X,Y, I), ci is a subconcept of di). Then we have

Theorem 2. B(X,Y, I)/ a≈ equipped with � is a partially ordered set which is a complete lattice, the so-called factor
lattice of B(X,Y, I) by similarity ≈ and a threshold a.

Elements of B(X,Y, I)/ a≈ can be seen as similarity-based granules of formal concepts from B(X,Y, I).
B(X,Y, I)/ a≈ thus provides a granular view on (a possibly large) B(X,Y, I). Note also that if a≈ is transitive
then it is a congruence relation on B(X,Y, I) and B(X,Y, I)/ a≈ is the usual factor lattice modulo a congruence.

We now present an illustrative example. Consider the data table in Table 1. X contains nine objects (Mercury, . . . ,
Pluto), Y contains four attributes (“size small,” . . . , “near to sun”). The corresponding concept lattice is depicted
in Fig. 1.

Table 1
Data table with fuzzy attributes

Size From sun

small large far near

Mercury (Me) 1 0 0 1
Venus (V) 1 0 0 1
Earth (E) 1 0 0 1
Mars (Ma) 1 0 1

2 1

Jupiter (J) 0 1 1 1
2

Saturn (S) 0 1 1 1
2

Uranus (U) 1
2

1
2 1 0

Neptune (N) 1
2

1
2 1 0

Pluto (P) 1 0 1 0

1016 R. Belohlavek et al. / Journal of Computer and System Sciences 73 (2007) 1012–1022
Fig. 1. Concept lattice B(X,Y, I) of data table from Table 1.

Fig. 2.
1
2 ≈-blocks of the concept lattice of Fig. 1 and the corresponding factor lattice B(X,Y, I)/

1
2 ≈.

For a = 1
2 there are twelve 1/2≈-blocks and they are depicted in Fig. 2 (blocks are highlighted by solid lines)

together with the corresponding factor lattice B(X,Y, I)/
1
2 ≈.

R. Belohlavek et al. / Journal of Computer and System Sciences 73 (2007) 1012–1022 1017
3.2. Computing the factor lattice directly from input data

In order to compute B(X,Y, I)/ a≈ using definition and Lemma 1, one has (1) to compute the whole concept
lattice B(X,Y, I) and then (2) to compute a≈-blocks on B(X,Y, I), which can be quite demanding. We are going
to propose a way to compute B(X,Y, I)/ a≈ directly from input data 〈X,Y, I 〉. We need some auxiliary results. For
basic properties of concept lattices in fuzzy setting we refer to [2,5]. For a fuzzy set C in U and a ∈ L, the fuzzy sets
a → C and a ⊗ C in U are defined by (a → C)(u) = a → C(u) and (a ⊗ C)(u) = a ⊗ C(u) for each u ∈ U . For
fuzzy sets C,D in U , put (C ≈ D) = ∧

u∈U C(u) ↔ D(u). Furthermore, we call a fuzzy set A in X an extent if there
is a fuzzy set B in Y such that 〈A,B〉 ∈ B(X,Y, I) (dually, B is an intent if there is A with 〈A,B〉 ∈ B(X,Y, I)).

Lemma 3. If A is an extent then so is a → A; if B is an intent then so is a → B .

Proof. We prove the assertion for extents. Let A be an extent, i.e. 〈A,B〉 ∈ B(X,Y, I) for some B . We have to
show that 〈a → A,B ′〉 ∈ B(X,Y, I). It suffices to show that a → A = (a → A)↑↓ (since then 〈a → A, (a → A)↑〉 is
a formal concept). Since a → A ⊆ (a → A)↑↓ is always the case, we have to show (a → A)↑↓ ⊆ a → A which holds
iff (a → A)↑↓(x) � a → A(x) for each x ∈ X. Using adjointness, the latter is equivalent to a � (a → A)↑↓(x) →
A(x). Since

(a → A)↑↓(x) → A(x) �
∧
x∈X

(a → A)↑↓(x) ↔ A(x) = (
(a → A)↑↓ ≈ A

)
,

it suffices to show a � ((a → A)↑↓ ≈ A). First, we have a � ((a → A) ≈ A). Indeed, from a � ((a → A(x)) →
A(x)) and a � (A(x) → (a → A(x))) for each x ∈ X we have a � ((a → A(x)) ↔ A(x)) for each x ∈ X, i.e.
a �

∧
x∈X((a → A(x)) ↔ A(x)) = ((a → A) ≈ A). Furthermore, since (A1 ≈ A2) � (A

↑
1 ≈ A

↑
2) and (B1 ≈ B2) �

(B
↓
1 ≈ B

↓
2) for A1,A2 ∈ LX and B1,B2 ∈ LY (see [2]), we have (A1 ≈ A2) � (A

↑
1 ≈ A

↑
2) � (A

↑↓
1 ≈ A

↑↓
2). Putting

this together, we get a � ((a → A) ≈ A) � ((a → A)↑ ≈ A↑) � ((a → A)↑↓ ≈ A↑↓), completing the proof. �
The next lemma shows that for a formal concept 〈A,B〉, 〈A,B〉a and 〈A,B〉a , defined by (1) and (2) as infimum

and supremum of all formal concepts similar to 〈A,B〉 to degree at least a, can be computed from 〈A,B〉 directly.

Lemma 4. For 〈A,B〉 ∈ B(X,Y, I), we have

(a) 〈A,B〉a = 〈(a ⊗ A)↑↓, a → B〉 and
(b) 〈A,B〉a = 〈(a → A), (a ⊗ B)↓↑〉.

Proof. Due to duality we verify only (a). The assertion follows from the following claims.

(a1) (a ⊗ A)↑↓ is an extent of a formal concept 〈(a ⊗ A)↑↓,D〉 which is similar to 〈A,B〉 to degree at least a;
(a2) if 〈C,F 〉 is a formal concept similar to 〈A,B〉 to degree at least a then 〈(a ⊗ A)↑↓,D〉 � 〈C,F 〉;
(a3) a → B is an intent of a concept c which is similar to 〈A,B〉 to degree at least a;
(a4) if 〈C,F 〉 is a concept similar to 〈A,B〉 to degree at least a then for c from (a3) we have c � 〈C,F 〉.

Indeed, from (a1) and (a2) we get that 〈(a ⊗ A)↑↓,D〉 is the least formal concept similar to 〈A,B〉 to degree at least a.
Therefore, 〈A,B〉a = 〈(a ⊗ A)↑↓,D〉. Then, (a3) and (a4) yield that a → B is an intent of the least formal concept
similar to 〈A,B〉 to degree at least a, i.e. a → B = D. We now verify (a1)–(a4).

(a1): We have a � ((a ⊗ A) ≈ A) � ((a ⊗ A)↑ ≈ A↑) � ((a ⊗ A)↑↓ ≈ A↑↓) = ((a ⊗ A)↑↓ ≈ A) since A is an
extent.

(a2): If a � (A ≈ C) then using adjointness, we get a ⊗ A ⊆ C from which we have (a ⊗ A)↑↓ ⊆ C↑↓ = C,
proving (a2).

(a3): By Lemma 3, a → B is an intent. Using adjointness we easily get a � (B ≈ a → B) = (〈A,B〉 ≈ c).
(a4): We need to show F ⊆ a → B . Since a � (〈A,B〉 ≈ 〈C,F 〉) = (B ≈ F), adjointness gives a ⊗ F ⊆ B and

then F ⊆ a → B . The proof is complete. �

1018 R. Belohlavek et al. / Journal of Computer and System Sciences 73 (2007) 1012–1022
Thus we have (〈A,B〉a)a = 〈a → (a ⊗ A)↑↓, (a ⊗ (a → B))↓↑〉.

Lemma 5. For 〈A,B〉 ∈ B(X,Y, I) we have 〈A,B〉a = ((〈A,B〉a)a)a .

Proof. First we show that for every c, d ∈ B(X,Y, I) we have (1) c � d implies ca � da , (2) c � d implies ca � da ,
(3) c � (ca)

a , (4) c � (ca)a . (1): Recall that ca = ∧{e ∈ B(X,Y, I) | 〈c, e〉 ∈ a≈}. We need to show that if 〈d,f 〉 ∈ a≈
then ca � f . Thus suppose 〈d,f 〉 ∈ a≈. From 〈c, c〉 ∈ a≈ and from the fact that a≈ is a tolerance relation compatible
with lattice operations on B(X,Y, I) we get 〈c, c ∧ f 〉 = 〈c ∧ d, c ∧ f 〉 ∈ a≈. Now, since ca is the infimum of all e

such that 〈c, e〉 ∈ a≈, we have ca � c ∧ f and since c ∧ f � f , we get ca � f , proving (1). (2) can be proved
analogously. (3) and (4) are obvious.

Now, let c = 〈A,B〉. By (3), c � (ca)
a and so ca � ((ca)

a)a by (1). Applying (4) to ca we get ca � ((ca)
a)a ,

proving ca = ((ca)
a)a . �

By Lemma 5, if a a≈-block [c1, c2] is generated by 〈A,B〉 ∈ B(X,Y, I), i.e. c1 = 〈A,B〉a , c2 = (〈A,B〉a)a , then
it is also generated by c2, i.e. c1 = (c2)a and c2 = ((c2)a)

a . Therefore, a≈-blocks [c1, c2] are uniquely given by their
suprema c2. Moreover, since each formal concept c2 = 〈A,B〉 is uniquely given by A (namely, B = A↑), a≈-blocks
are uniquely given by extents of their suprema. Denote the set of all extents of suprema of a≈-blocks by ESB(a), i.e.

ESB(a) = {
A ∈ LX

∣∣ 〈A,B〉 ∈ B(X,Y, I) and
[〈A,B〉a, 〈A,B〉] ∈ B(X,Y, I)/ a≈}

.

Before presenting the main result, let us recall that a fuzzy closure operator in a set X [3] is a mapping C :A → C(A)

satisfying A ⊆ C(A), S(A1,A2) � S(C(A1),C(A2)), and C(A) = C(C(A)), for any A,A1,A2 ∈ LX . A fixed point
of C is any fuzzy set A in X such that A = C(A). Denote by fix(C) the set of all fixed points of C, i.e.

fix(C) = {
A ∈ LX

∣∣ A = C(A)
}
.

Theorem 6. Given input data 〈X,Y, I 〉 and a threshold a ∈ L, a mapping Ca sending a fuzzy set A in X to a fuzzy set
a → (a ⊗ A)↑↓ in X is a fuzzy closure operator in X for which fix(Ca) = ESB(a).

Proof. First, we verify that Ca is a fuzzy closure operator. A ⊆ Ca(A) means A ⊆ a → (a ⊗A)↑↓ which is equivalent
(by adjointness) to a ⊗ A ⊆ (a ⊗ A)↑↓ which is true since E ⊆ E↑↓ is always the case. We showed A ⊆ Ca(A).
S(A1,A2) � S(Ca(A1),Ca(A2)): Since for D1,D2 ∈ LU , S(D1,D2) � S(a ⊗ D1, a ⊗ D2) and S(D1,D2) �
S(a → D1, a → D2), see [4], we have

S(A1,A2) � S(a ⊗ A1, a ⊗ A2) � S
(
(a ⊗ A1)

↑↓, (a ⊗ A2)
↑↓)

� S
(
a → (a ⊗ A1)

↑↓, a → (a ⊗ A2)
↑↓)

= S
(
Ca(A1),Ca(A2)

)
.

To verify Ca(A) = Ca(Ca(A)), suppose first that A is an extent. Then, by Lemma 4, Ca(A) is the extent of
(〈A,A↑〉a)a . In order to show Ca(A) = Ca(Ca(A)), we thus have to check (〈A,A↑〉a)a = (((〈A,A↑〉a)a)a)a which
is true due to Lemma 5. If A is not an extent, the assertion follows from the fact that Ca(A) = Ca(A

↑↓), the fact that
A↑↓ is an extent and the previous claim. We thus need to check Ca(A) = Ca(A

↑↓). We have a � (A ≈ a ⊗ A) �
(A↑↓ ≈ (a ⊗ A)↑↓). So, A↑↓ is similar to (a ⊗ A)↑↓ to degree at least a, whence a → (a ⊗ A)↑↓ ⊇ A↑↓ since by
Lemma 4, a → (a ⊗ A)↑↓ is the greatest one which is similar to (a ⊗ A)↑↓ to degree at least a. In fact, in order to
apply Lemma 4, A needs to be an extent. However, going through the proof, one can see that (a ⊗A)↑↓ is the extent of
the least formal concept which is similar to A to degree at least a even for an arbitrary fuzzy set A (not necessarily an
extent). Therefore, the claim of Lemma 4 can be safely used in our case. We therefore have A ⊆ A↑↓ ⊆ a → (a⊗A)↑↓
and since a ⊗ (a → b) � b, we get

(a ⊗ A)↑↓ ⊆ (
a ⊗ A↑↓)↑↓ ⊆ (

a ⊗ (
a → (a ⊗ A)↑↓))↑↓ ⊆ (

(a ⊗ A)↑↓)↑↓ = (a ⊗ A)↑↓.

This proves (a ⊗ A)↑↓ = (a ⊗ A↑↓)↑↓ and so Ca(A) = a → (a ⊗ A)↑↓ = a → (a ⊗ A↑↓)↑↓ = Ca(A
↑↓).

Second, we verify fix(Ca) = ESB(a). Let A ∈ fix(Ca). By Lemma 1, the interval [〈A,A↑〉a, (〈A,A↑〉a)a] is a a≈-
block, and by Lemma 4, (〈A,A↑〉a)a = 〈a → (a ⊗ A)↑↓, . . .〉. Since A = Ca(A) = a → (a ⊗ A)↑↓, A is the extent of

R. Belohlavek et al. / Journal of Computer and System Sciences 73 (2007) 1012–1022 1019
a supremum of a block, i.e. A ∈ ESB(a). Conversely, let A ∈ ESB(a). Then [〈A,A↑〉a, 〈A,A↑〉] is an a≈-block and
so (〈A,A↑〉a)a = 〈A,A↑〉. Lemma 4 now gives A = a → (a ⊗ A)↑↓, i.e. A = Ca(A) verifying A ∈ fix(Ca). �

Therefore, A is the extent of some formal concept c2 which is the supremum of some a≈-block [c1, c2] ∈
B(X,Y, I)/ a≈ if and only if A is a fixed point of Ca . By Theorem 6 and the above considerations, go-
ing through fix(Ca) and computing for each A ∈ fix(Ca) the corresponding [〈A,A↑〉a, 〈A,A↑〉] = [〈(a ⊗ A)↑↓,

a → A↑〉, 〈A,A↑〉] generates all a≈-blocks of B(X,Y, I)/ a≈. Strictly speaking, we do not generate the a≈-blocks
[c1, c2] ∈ B(X,Y, I)/ a≈ but only their boundary formal concepts c1, c2 ∈ B(X,Y, I). This is, however, in accordance
with the purpose of the factorization of B(X,Y, I): We are looking for a granular view which is more concise than
B(X,Y, I) itself.

The problem of computing B(X,Y, I)/ a≈ thus reduces to the problem of computing fix(Ca). To this end, we can
use the algorithm described in [6]. The algorithm is an extension of the Ganter’s algorithm generating all fixed points
of an (ordinary) closure operator (see [9]) and generates all fixed points of a fuzzy closure operator C in a lexicographic
order. Note that the algorithm in [6] is formulated in terms of the fuzzy closure operator ↑↓ (i.e. sending A to A↑↓).
But since each fuzzy closure operator is of the form of ↑↓, there is no loss of generality involved. We now briefly
recall the algorithm from [6].

Let X and L be finite. Suppose X = {1,2, . . . , n} and L = {0 = a1, a2, . . . , ak = 1} such that if ai � aj in L
then i � j (i.e. the ordering of elements of L by indices extends their ordering in L). For i, r ∈ {1, . . . , n}, j, s ∈
{1, . . . , k}, put (i, j) � (r, s) iff i < r , or i = r and j � s. For A ∈ LX , (i, j) ∈ X × {1, . . . , k}, put A ⊕ (i, j) :=
Ca((A ∩ {1,2, . . . , i − 1}) ∪ {aj/i}). Here, A ∩ {1,2, . . . , i − 1} is the intersection of a fuzzy set A and the ordinary
set {1,2, . . . , i − 1}, i.e. (A ∩ {1,2, . . . , i − 1})(x) = A(x) for x < i and (A ∩ {1,2, . . . , i − 1})(x) = 0 otherwise.
Furthermore, for A,B ∈ LX , put A <(i,j) B iff A∩ {1, . . . , i − 1} = B ∩ {1, . . . , i − 1} and A(i) < B(i) = aj . Finally,
put A < B iff A <(i,j) B for some (i, j). Then < is a total order on LX and for each A ∈ LX , the least fixed point A+ ∈
fix(Ca) which is greater (w.r.t. <) than A is given by A+ = A ⊕ (i, j) where (i, j) is the greatest one with A <(i,j)

A ⊕ (i, j) (see [6]). The algorithm for generating a≈-blocks which is based on this description of the successor
operator + follows.

INPUT: 〈X,Y, I 〉 (data table with fuzzy attributes), a ∈ L (similarity threshold)
OUTPUT: B(X,Y, I)/ a≈ (collection of all a≈-blocks [c1, c2])

/* Algorithm */
A := ∅
while A �= X do

A := A+
store([〈(a ⊗ A)↑↓, a →A↑〉, 〈A,A↑〉])

4. Examples and experiments

The aim of this section is to demonstrate experimentally the effect of reduction of size of a fuzzy concept lattice
by factorization by similarity, and the speed-up of our algorithm. By reduction of size of a fuzzy concept lattice given
by a data table 〈X,Y, I 〉 with fuzzy attributes and a user-specified threshold a, we mean the ratio

|B(X,Y, I)/ a≈|
|B(X,Y, I)|

of the number |B(X,Y, I)/ a≈| of elements of B(X,Y, I)/ a≈, i.e. the number of elements of the factor lattice, to
the number |B(X,Y, I)| of elements of B(X,Y, I), i.e. the number of elements of the original lattice. By a speed-
up we mean the ratio of the time for computing the factor lattice B(X,Y, I)/ a≈ by a naive algorithm to the time
for computing B(X,Y, I)/ a≈ by our algorithm. By “our algorithm” we mean the algorithm described in the end of
Section 3. By “naive algorithm” we mean computing B(X,Y, I)/ a≈ by first generating B(X,Y, I) (by a polynomial
time-delay algorithm from [6]) and subsequently generating the a≈-blocks by producing [〈A,B〉a, (〈A,B〉a)a].

1020 R. Belohlavek et al. / Journal of Computer and System Sciences 73 (2007) 1012–1022
Example 7. Consider the data table depicted in Table 2. The data table contains countries (objects from X) and some
of their economic characteristics (attributes from Y). The values of the characteristics are scaled to interval [0,1] so
that the characteristics can be considered as fuzzy attributes.

Table 3 summarizes the results when using Łukasiewicz fuzzy logical operations and threshold values a =
0.2,0.4,0.6,0.8. The whole concept lattice B(X,Y, I) contains 774 formal concepts.

The example demonstrates that smaller thresholds lead to both larger size reduction and speed-up. Furthermore,
we can see that the time needed for computing the factor lattice B(X,Y, I)/ a≈ is smaller than time for computing the
original concept lattice B(X,Y, I).

Note also that since computing B(X,Y, I) using the polynomial time delay algorithm from [6] takes 2292 ms, most
of the time consumed by the naive algorithm is spent on factorization. For instance, for a = 0.2, 8995 ms is consumed
in total of which 2292 ms is spent on computing B(X,Y, I) and 6703 = 8895 − 2292 ms is spent on factorization, i.e.
on computing B(X,Y, I)/ a≈ from B(X,Y, I).

Figure 3 contains graphs depicting reduction |B(X,Y, I)/ a≈|/|B(X,Y, I)| and speed-up from Table 3.
Table 4 and Fig. 4 show the same characteristics when using the minimum-based fuzzy logical operations (instead

of Łukasiewicz fuzzy logical operations).

Example 8. In this example, the input data table 〈X,Y, I 〉 comes from samples of results of IPAQ questionnaire.
The purpose of the IPAQ (International Physical Activity Questionnaire) is to monitor various attributes related
to physical activity of a population. We used two data sets collected during a research program at the Faculty of
Physical Culture, Palacký University, Olomouc. The objects from X are both men and women in the Czech Re-
public who entered the questionnaire. The attributes are selected IPAQ-attributes, possibly scaled to [0,1] so that
they can be considered as fuzzy attributes. The first sample consists of 1000 objects and 8 attributes; the results
for minimum-based logical operations are depicted in Table 5. The second sample consists of 4318 objects and 8

Table 2
Data table with fuzzy attributes

1 2 3 4 5 6 7

1 Czech 0.4 0.4 0.6 0.2 0.2 0.4 0.2
2 Hungary 0.4 1.0 0.4 0.0 0.0 0.4 0.2
3 Poland 0.2 1.0 1.0 0.0 0.0 0.0 0.0
4 Slovakia 0.2 0.6 1.0 0.0 0.2 0.2 0.2
5 Austria 1.0 0.0 0.2 0.2 0.2 1.0 1.0
6 France 1.0 0.0 0.6 0.4 0.4 0.6 0.6
7 Italy 1.0 0.2 0.6 0.0 0.2 0.6 0.4
8 Germany 1.0 0.0 0.6 0.2 0.2 1.0 0.6
9 UK 1.0 0.2 0.4 0.0 0.2 0.6 0.6
10 Japan 1.0 0.0 0.4 0.2 0.2 0.4 0.2
11 Canada 1.0 0.2 0.4 1.0 1.0 1.0 1.0
12 USA 1.0 0.2 0.4 1.0 1.0 0.2 0.4

Attributes: 1—High Gross Domestic Product per capita (USD), 2—High Consumer Price
Index (1995 = 100), 3—High Unemployment Rate (percent—ILO), 4—High production of
electricity per capita (kWh), 5—High energy consumption per capita (GJ), 6—High export
per capita (USD), 7—High import per capita (USD).

Table 3
Łukasiewicz fuzzy logical connectives, B(X,Y, I) of data from Table 2

0.2 0.4 0.6 0.8

size |B(X,Y, I)/ a≈| 8 57 193 423
size reduction 0.010 0.073 0.249 0.546
naive algorithm (ms) 8995 9463 8573 9646
our algorithm (ms) 23 214 383 1517
speed-up 391.09 44.22 22.38 6.36

|B(X,Y, I)| = 774, time for computing B(X,Y, I) = 2292 ms; table entries for thresholds
a = 0.2,0.4,0.6,0.8.

R. Belohlavek et al. / Journal of Computer and System Sciences 73 (2007) 1012–1022 1021
Fig. 3. Size reduction and speed-up from Table 3.

Table 4
Minimum-based fuzzy logical connectives, B(X,Y, I) of data from Table 2

0.2 0.4 0.6 0.8

size |B(X,Y, I)/ a≈| 8 64 194 304
size reduction 0.026 0.210 0.638 1.000
naive algorithm (ms) 1830 1634 3787 4440
our algorithm (ms) 23 106 431 1568
speed-up 79.57 15.42 8.79 2.83

|B(X,Y, I)| = 304, time for computing B(X,Y, I) = 341 ms; table entries for thresholds a =
0.2,0.4,0.6,0.8.

Fig. 4. Size reduction and speed-up from Table 4.

Table 5
|B(X,Y, I)| = 294, time for computing B(X,Y, I) = 412 sec

0.25 0.5 0.75

size |B(X,Y, I)/ a≈| 63 130 208
size reduction 0.214 0.442 0.707
naive algorithm (sec) 436 444 444
our algorithm (sec) 121 232 322
speed-up 3.60 1.91 1.38

Table entries for thresholds a = 0.25,0.5,0.75.

attributes; the results for minimum-based logical operations are depicted in Table 6. Note that the differences be-
tween the speed-up in Tables 3 and 4, and in Tables 5 and 6 are mainly due to the differences in size reduction.
This points out a natural property of our algorithm. Namely, the smaller the factor of size reduction, the larger the
speed-up.

1022 R. Belohlavek et al. / Journal of Computer and System Sciences 73 (2007) 1012–1022
Table 6
|B(X,Y, I)| = 1095, time for computing B(X,Y, I) = 376 min

0.25 0.5 0.75

size |B(X,Y, I)/ a≈| 142 416 697
size reduction 0.129 0.379 0.636
naive algorithm (min) 394 396 410
our algorithm (min) 75 175 284
speed-up 5.25 2.26 1.44

Table entries for thresholds a = 0.25,0.5,0.75.

Acknowledgments

Supported by grant No. 201/05/0079 of the Czech Science Foundation, by grant No. 1ET101370417 of GA AV
ČR, and by institutional support, research plan MSM 6198959214.

References

[1] G. Ammons, D. Mandelin, R. Bodik, J.R. Larus, Debugging temporal specifications with concept analysis, in: Proc. ACM SIGPLAN ’03
Conference on Programming Language Design and Implementation, San Diego, CA, June 2003, pp. 182–195.

[2] R. Belohlavek, Similarity relations in concept lattices, J. Logic Comput. 10 (6) (2000) 823–845.
[3] R. Belohlavek, Fuzzy closure operators, J. Math. Anal. Appl. 262 (2001) 473–489.
[4] R. Belohlavek, Fuzzy Relational Systems: Foundations and Principles, Kluwer Academic/Plenum Publishers, New York, 2002.
[5] R. Belohlavek, Concept lattices and order in fuzzy logic, Ann. Pure Appl. Logic 128 (2004) 277–298.
[6] R. Belohlavek, Algorithms for fuzzy concept lattices, in: RASC 2002, Nottingham, United Kingdom, 12–13 December, 2002, pp. 200–205.
[7] C. Carpineto, G. Romano, Concept Data Analysis. Theory and Applications, J. Wiley, 2004.
[8] U. Dekel, Y. Gill, Visualizing class interfaces with formal concept analysis, in: OOPSLA ’03, Anaheim, CA, October 2003, pp. 288–289.
[9] B. Ganter, R. Wille, Formal Concept Analysis. Mathematical Foundations, Springer, Berlin, 1999.

[10] G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic. Theory and Applications, Prentice Hall, Upper Saddle River, NJ, 1995.
[11] S. Pollandt, Fuzzy Begriffe, Springer, Berlin, 1997.
[12] G. Snelting, Reengineering of configurations based on mathematical concept analysis, ACM Trans. Software Eng. Method. 5 (2) (1996)

146–189.
[13] G. Snelting, F. Tip, Understanding class hierarchies using concept analysis, ACM Trans. Program. Lang. Syst. 22 (3) (2000) 540–582.
[14] P. Valtchev, R. Missaoui, R. Godin, M. Meridji, Generating frequent itemsets incrementally: Two novel approaches based on Galois lattice

theory, J. Exp. Theor. Artif. Intell. 14 (2/3) (2002) 115–142.
[15] R. Wille, Restructuring lattice theory: An approach based on hierarchies of concepts, in: I. Rival (Ed.), Ordered Sets, Reidel, Dordrecht, 1982,

pp. 445–470.
[16] L.A. Zadeh, Similarity relations and fuzzy orderings, Inform. Sci. 3 (1971) 177–200.
[17] L.A. Zadeh, Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic, Fuzzy Sets and Systems 90

(1997) 111–127.
[18] M. Zaki, Mining non-redundant association rules, Data Min. Knowl. Discov. 9 (2004) 223–248.

