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Abstract—We critically examine the problem of quality assess-
ment of algorithms for Boolean matrix factorization. We argue
that little attention is paid to this problem in the literature.
We view this problem as a multifaceted one and identify key
aspects with respect to which the quality of algorithms should
be assessed. Because of its utmost importance, we focus on assess-
ment of quality of sets of factors extracted from Boolean data,
propose ways to assess such quality and provide experimental
evaluation involving selected factorization algorithms. We argue
that the views involved in our proposal, represent reasonable
basic standpoints for further systematic approaches to quality
assessment.
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I. INTRODUCTION

A. Problem Setting

Boolean matrix factorization (BMF), called also Boolean
matrix decomposition, has resulted in various methods for
analysis and processing of Boolean data and has improved our
understanding of this kind of data. The methods developed
are becoming established tools for data management. Most
research has focused on the design of new factorization strate-
gies. Evaluation of performance of the developed algorithms
has remained on intuitive grounds and has not been paid proper
attention so far. It is the primary aim of this paper to look at
evaluation of performance of BMF algorithms in detail.

Let us recall basic notions and introduce the notation
we use regarding BMF. Denote by I an n × m Boolean
matrix. The set of all n × m Boolean matrices is denoted
{0, 1}n×m. We interpret such matrices primarily as object-
attribute incidence matrices (hence the symbol I). That is, the
entry Iij corresponding to the row i and the column j is either
1 or 0, indicating that the object i does or does not have the
attribute j. The ith row and jth column vector of I is denoted
by Ii and I j , respectively.

Generally speaking, the basic problem in BMF is to find
for a given I ∈ {0, 1}n×m matrices A ∈ {0, 1}n×k and B ∈
{0, 1}k×m for which

I (approximately) equals A ◦B, (1)

where ◦ is the Boolean matrix product, i.e.

(A ◦B)ij =
k

max
l=1

min(Ail, Blj).
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Importantly, a decomposition of I into A ◦ B may be
interpreted as a discovery of k factors exactly or approximately
explaining the data. The factor model given by (1) is described
as follows: I , A, and B are interpreted as the object-attribute,
object-factor, and factor-attribute matrices; the matrices A and
B explain the object-attribute matrix I as follows: the object
i has the attribute j if and only if there exists factor l such
that l applies to i and j is one of the particular manifestations
of l. The least k for which an exact decomposition I = A ◦B
exists is called the Boolean rank (or Schein rank) of I .

The approximate equality ≈ in (1) is assessed by means of
the well-known L1-norm || · ||,

||C|| =
∑m,n

i,j=1 |Cij |,

and the corresponding metric E, defined for C,D ∈
{0, 1}n×m by

E(C,D) = ||C −D|| =
∑m,n

i,j=1 |Cij −Dij |. (2)

B. Relevant work

Matrix decompositions represent an extensive subject whose
coverage is beyond the scope of this paper; we therefore
focus on directly relevant work regarding Boolean matrices.
Let us just mention that decompositions of Boolean matrices
using methods designed originally for real-valued data and
various modifications of these methods appear in a number
of papers. [25] compares several approaches to assessment of
dimensionality of Boolean data and concludes that a major
problem with applying to Boolean data the methods designed
originally for real-valued data is the lack of interpretability;
similar observations were presented by other authors. Note
also that in addition to the literature on Boolean matrices,
results relevant to BMF are traditionally presented in the
literature on binary relations, graph theory, and formal concept
analysis, see e.g. [5], [8], [11], [23].

Among the first works on data analysis applications of
BMF are [20], [21], in which the authors have already been
aware of the provable computational difficulty (NP-hardness)
of the decomposition problem due to the NP-hardness of the
set basis problem [24]. An early algorithm, currently little
known though, is the 8M algorithm, which is part of the
BMDP statistical software since the late 1970s. In current
data mining research, the interest in BMF is due to the work
of Miettinen et al. In particular, the DBP, the corresponding
complexity results, and the ASSO algorithm discussed below
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appeared in [16]. In [2], we showed that formal concepts (i.e.
fixpoints of Galois connections) are natural factors of Boolean
matrices, proved their optimality for exact factorizations, de-
scribed transformations between attribute and factor spaces,
and proposed the GRECOND algorithm discussed below. [4]
presents a deeper insight into from-below approximations and
a new algorithm based on it, as well as some observations
regarding general BMF which we use. The other BMF al-
gorithms which appeared in the recent data mining literature
and which we use in our evaluation include HYPER [27]
and PANDA [13]. Further work on various aspects of the
decomposition problem and applications of BMF includes [7],
[12], [14], [15], [17], [18], [22], [26]. The above literature
contains numerous experimental evaluations of the proposed
algorithms. In the evaluation in this paper we use common
real benchmark data.

II. QUALITY ASSESSMENT

A. Variety of Aspects Regarding Quality Assessment

1) General Considerations: There are several aspects with
respect to which one may address the question of quality of
of factorization algorithms. They include the following ones:

– computational complexity, i.e. time complexity and space
complexity of the algorithm in particular;

– approximation factor and possibly other characteristics
regarding the capability of the algorithm to compute
optimal and suboptimal solutions;

– quality of factors which itself is a complex aspect.
2) Computational Complexity and Approximation Factors:

Computational complexity is a basic technical feature of a
given factorization algorithm. Ceteris paribus, one clearly
prefers algorithms with smaller complexity, i.e. those which
require less time and space. It is a usual practice that the
authors of new algorithms provide information about the time
and possibly also space complexity, e.g. in terms of the
standard big O notation. Since the estimates used are often
loose and since the big O notation itself hides several issues, it
may actually be more telling to provide information regarding
relative time complexity, e.g. saying that algorithm 1 is on
average (over a collection of certain datasets) three-times faster
than algorithm 2, as recently done in [4]. Nevertheless, it
appears that for most of the current factorization algorithms,
neither time nor space complexity is a critical issue. That is
to say, given the current ways of utilizing the results of BMF,
the algorithms deliver the decompositions quickly enough—
time and space complexity is therefore not prohibitive. Fac-
torizations of benchmark datasets are being computed within
seconds or small tens of seconds as a rule on an ordinary
PC (see e.g. [4]). An exception is represented by the TILING
algorithm [9] and the conceptually similar Algorithm 1 of
[2] which both compute in advance a large space of possible
factors and iteratively select factors in this set which is both
time and space demanding.

Due to [24], it is known that the optimization version of the
basic decomposition problem is NP-hard. The basic decompo-

sition problem is to find for an input matrix I ∈ {0, 1}n×m two
matrices A ∈ {0, 1}n×k and B ∈ {0, 1}k×m with I = A ◦ B
such that k is as small as possible. NP-hardness applies to
several variants of this problem as well, including the DBP
and AFP mentioned below. As a result, unless P=NP, no
polynomial time factorization algorithm computing optimal
decompositions exists. Therefore, the existing algorithms are
based on heuristics and one is interested in approximation
factors. An approximation factor of an algorithm for an opti-
mization problem represents a guarantee of suboptimality of
the solution obtained by the algorithm [10]. For instance, if the
approximation factor is 2 we are sure that the algorithm does
compute at most 2k factors where k is the least number of fac-
tors possible (i.e. the Boolean rank) for the given input matrix.
Generally, except for [9] and [2], there are almost no results on
approximation factors of the proposed factorization algorithms
in the literature. This is partially justified by the recent negative
result on approximability [6] saying that the basic decompo-
sition problem is NP-hard to approximate within factor n1−ε.
The lower approximability bound is therefore not encouraging;
namely, note how bad a linear approximation factor, n, is
for a potential algorithm: such factor only guarantees that,
for example, when decomposing a 1000 × 1000 matrix with
Boolean rank 50 (in which case n = 1000), the algorithm
computes a decomposition with no more than n×50 = 50 000
factors. The existing algorithms capable of computing exact
decompositions, such as GRECOND, perform much better
on benchmark datasets. From this viewpoint, the practical
significance of obtaining the approximation factors is limited.
On the other hand, clearly, analyses leading to approximation
factors of the existing algorithms may clearly reveal substantial
knowledge regarding the factorization problems and are thus
needed.

We now turn to the third aspect, namely quality of factors.
This aspect represents the main objective of our paper.

B. Quality of Factors
As was mentioned above, quality of factors represents a

complex and important issue. The very question of whether a
particular set of factors delivered by a particular algorithm for
a particular dataset is good or not depends on circumstances.
We first present a geometric view of factorization. Then we
discuss the problem of interpretability of individual factors,
in which we employ the geometric view, and the related
knowledge discovery view of the problem of assessing the
quality of factors. Then we turn to two other views, the
reduction of dimensionality view and the explanatory view.

1) Geometry of Factorizations: It is a useful fact, made
explicit e.g. in [4, Observation 1], that a decomposition of
a Boolean matrix I ∈ {0, 1}n×m corresponds to a coverage
of the entries of I containing 1s by rectangular matrices, or
rectangles for short. These are matrices J ∈ {0, 1}n×m, for
which there exist vectors C ∈ {0, 1}n×1 and D ∈ {0, 1}1×m

such that J = C ◦D, or alternatively, matrices whose entries
with 1s form a rectangular area upon a suitable permutation of
rows and columns. A Boolean matrix product A◦B with A ∈
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{0, 1}n×k and B ∈ {0, 1}k×m may alternatively be looked at
as a max-superposition of rectangles Jl = A l ◦Bl in that

(A ◦B)ij =
k

max
l=1

(Jl)ij ;

here, A l and Bl denote the lth column of A and the lth row
of B, respectively. This geometric view, which is unfortunately
not always recognized in the literature on BMF, tells us that
finding a decomposition (exact or approximate) of I into
A ◦ B using k factors means finding a coverage (exact or
approximate) of the 1s in I by k rectangles full of 1s.

2) Interpretability of Individual Factors: The view also tells
us that no matter how one computes factors, each factor,
say factor l, may always be identified with a rectangle Jl
full of 1s, or alternatively, as a pair 〈A l, Bl 〉 of the above-
mentioned vectors, for which Jl = A l ◦ Bl . Such a factor
is therefore naturally interpreted as an abstract property (or
attribute), generally distinct from the m original attributes,
which applies to some of the n objects, namely to objects i
for which Ail = 1, and which is characterized by some of the
m original attributes, namely attributes j for which Blj = 1.
Such attributes j are viewed as particular manifestations of
factor l. This matter is described in detail in [2].

The above considerations imply that factors in BMF are eas-
ily interpretable. This is confirmed by several studies including
[25] in which the authors argue that because of interpretability,
BMF is considerably more appropriate to use than the many
existing factorization methods originally developed for real-
valued matrices. Interpretability is crucial for what may be
called a knowledge discovery view of assessing quality of
BMF algorithms—revealing easily interpretable factors from
the input data means discovering new knowledge from the
data.

There is, however, an important aspect regarding inter-
pretability of factors in BMF, which is not properly understood
in the literature. Namely, some authors such as those of the
PANDA algorithm [13], inspired by the well-known minimum
description length principle (MDL), suggest that good factors
are those with small description length. In our notation, a
description length of factor 〈A l, Bl 〉 is the sum of the height
and width of the corresponding rectangle, i.e. the number

dl(A l, Bl ) = ||A l||+ ||Bl ||,

which is the sum of the number of 1s in A l and the number
of 1s in Bl . Minimizing the sum of description lengths of all
the factors is in fact employed in the cost function of PANDA.
We claim that this view is flawed and that, instead, well
interpretable factors should correspond to maximal rectangles
rather than to rectangles that have small perimeter (i.e. small
description length). The rationale for our argument stems
formal concept analysis [8]. Put succinctly, it is generally not
a good idea to remove attributes or objects from factors to
shorten their description length because the interpretability
of factors suffers. Our preference of maximal rectangles,
articulated already in [2], derives from our experience with
analyses of many datasets. We do not claim that the MDL

approach is wrong. But we do claim that it should be justified
by concrete data analyses. Otherwise it remains a theoretical
construct—an unverified hypothesis regarding usefulness of
factors. This issue along with illustrative examples shall be
discussed in detail in the full version of this paper.

3) Quality of a Set of Extracted Factors: We recognize two
ways of assessing the quality of a set of factors produced
by a particular algorithm, which we call the reduction of
dimensionality view and the explanatory view. These views
are based on two generally recognized virtues of factorization
methods. These matters are discussed in the next sections.

C. Reduction of Dimensionality View

Discovery of a set of k factors in the n×m Boolean matrix
I may be viewed as a discovery of k new Boolean variables,
i.e. new attributes. In particular, if I ≈ A◦B, then A describes
the n given objects in terms of k factors (new attributes) and
B describes a relationship between the k factors and the m
original attributes. Thus, the objects may either be described
in the m-dimensional space of the original attributes or in the
k-dimensional space of factors. If the number k of factors
is smaller than the number m of the original attributes, then
going from the attribute space to the factor space may be
viewed as what is known as reduction of dimensionality.

Generally speaking, the usefulness of factorization methods
derives from the possibility to process data in the less-
dimensional factor space rather than the original attribute
space. The original attributes represent the directly observable
features. Good factors, on the other hand, should capture the
fundamental aspects of the data. If this is so, processing the
data in the factor space turns out to be more efficient than
processing in the original attribute space. Put conversely, if
processing of data in the factor space is considerably better
than the processing in the original attribute space, we may
regard the factors as good ones. In this respect, one may then
compare the quality of sets of factors delivered by particular
factorization algorithms.

Surprisingly, even though considerable effort has been de-
voted to development of further and further BMF algorithms,
almost no attention is paid to the question of how these
methods may further be utilized in processing Boolean data,
e.g. in machine learning. For one, this is in sharp contrast
to factorization methods for real-valued data which are being
routinely employed in machine learning and other areas. In
addition, the lack of studies on possible utilization of dimen-
sionality reduction due to BMF implies a lack of the much
needed feedback for quality assessment of the various BMF
algorithms.

An exception is, nevertheless, represented by [22] in which
the author employs the transformation formulas between the
factor and attribute spaces proposed in [2] in the problem of
classification of Boolean data. Put briefly, the idea is to first
factorize the classified Boolean data using a BMF algorithm
and then to do classification in the factor space rather than
in the original attribute space. Interestingly, such an approach
results in a significant increase of classification accuracy. In
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[3], the authors asked the question of which factorization
methods perform well in the described scenario. It turned
out that there are significant differences between the various
factorization methods employed. That is to say, with respect to
this particular employment of BMF, some algorithms turn out
as good one while some as not so good. We omit the details of
[3] due to limited scope but also because our main point here
is to point out the fact that studies on employment of BMF in
machine learning and other areas may not only demonstrate
usefulness of BMF in general but also provide a useful,
very concrete feedback regarding quality of BMF algorithms.
Without such feedback, research in BMF algorithms might
easily become a speculative theorizing.

D. Explanatory View

The other aspect pertaining to factorization methods relates
to what may be called an explanatory view. It is based on the
fact that the sole knowledge of factors is a useful knowledge
regarding the data provided the factors explain the data well,
because only then the factors represent the “true factors behind
the data.” In this respect, two particular views are recognized,
which are represented by the discrete basis problem (DBP) and
the approximate factorization problem (AFP). We first turn to
the underlying idea that good factors should explain data well.

1) Explanation of Data by Factors: Given the input matrix
I ∈ {0, 1}n×m and the object-factor and factor-attribute
matrices A ∈ {0, 1}n×k and B ∈ {0, 1}k×m, a basic way to
measure how well the data es explained by the k factors is to
observe the distance E(I, A◦B) defined by (2). The following
additional characteristics are useful and will be used in sequel.

First, the distance (error) function E may naturally be split
into two components, Eu corresponding to 1s in I that are 0s
(and hence uncovered) in A ◦ B and Eo corresponding to 0s
in I that are 1s (and hence overcovered) in A ◦B:

E(I, A ◦B) = Eu(I, A ◦B) + Eo(I, A ◦B), where
Eu(I, A ◦B) = |{〈i, j〉 ; Iij = 1, (A ◦B)ij = 0}|,
Eo(I, A ◦B) = |{〈i, j〉 ; Iij = 0, (A ◦B)ij = 1}|.

Second, to asses quality of decompositions delivered by
the algorithms, we employ the following function of A ∈
{0, 1}n×l and B ∈ {0, 1}l×m representing the coverage qual-
ity of the first l factors delivered by the particular algorithm:

c(l) = 1− E(I, A ◦B)/||I||. (3)

Similar functions are used in [2], [4], [9], [16]. We observe
the values of c for l = 0, . . . , k, where k is the number of
factors delivered by a particular algorithm. In BMF, one is
interested in the Eu and Eo parts of E (basically because of
their nonsymmetric roles), and thus also in the corresponding
relative errors

eu = Eu(I, A ◦B)/||I||, eo(l) = Eo(I,A ◦B)/||I||. (4)

Clearly,

c = 1− E/||I|| = 1− (Eu + Eo)/||I|| = 1− eu − eo.

The value of c represents the overall coverage of data by the
particular number l of observed factors. Clearly, for l = 0 (no
factors added, A and B are “empty”) we have c = 0, eu = 1,
and eo = 0.

2) DBP—Importance of the First Few Factors: One view
of BMF is reflected by the following problem:

– Discrete Basis Problem (DBP, [16]):
Given I ∈ {0, 1}n×m and a positive integer k, find A ∈
{0, 1}n×k and B ∈ {0, 1}k×m that minimize ||I−A◦B||.

DBP emphasizes the importance of the first few (presumably
most important) factors. In this perspective, the quality of
factors obtained by a BMF algorithms may be assessed by
observing the values of coverage c for small numbers l of
factors (e.g. for l = 2, 5, 10).

3) AFP—Importance of Explaining a Large Portion of
Data: The second view of BMF is reflected by the following
problem:

– Approximate Factorization Problem (AFP, [2]):
Given I and prescribed error ε ≥ 0, find A ∈ {0, 1}n×k

and B ∈ {0, 1}k×m with k as small as possible such that
||I −A ◦B|| ≤ ε.

AFP emphasizes the need to account for (and thus to explain)
a prescribed (presumably reasonably large) portion of data,
which is specified by ε. In this perspective, the quality of
factors obtained by a BMF algorithms may be assessed by ob-
serving the numbers l of factors needed to attain a prescribed
coverage c (e.g. for c = 0.8, 0.9, 1.0).

4) Combined View—Toward Quality Metrics: The DBP and
the AFP view represent two in a sense boundary views. Note
that AFP is relevant when one desires a good representation of
data by factors. This is indeed the case in the above-mentioned
application of BMF as preprocessing method in classification
of Boolean data. On the other hand, since Boolean factors
are naturally interpreted as clusters (cf. the above section on
interpretability of factors), the DBP view is relevant when a
few informative clusters are sought in the data.

When evaluating quality of BMF algorithms, one is natu-
rally led to a “combined view,” reflecting both the DBP and
the AFP views. Thus, a good BMF algorithm should produce a
set of factors such that the first few factors have good coverage
and, and the same time, the whole set of factors produced has
a large coverage, possibly close to 1, i.e. the factors explain a
large portion of data. Correspondingly, for a good factorization
algorithm c as a function of the number l (the first l factors
produced by the algorithm) should be increasing in l, should
have relatively large values even for small l (i.e. should be
steeply increasing in the beginning), and it is desirable that
for l = k we have c(l) equal or close to 1, i.e. the data is
almost fully explained by the k factors computed.

Our proposed measure of quality of a BMF algorithm is
thus based on the coverage quality function c(l) as defined
by (3). However, in order to reflect the significance of DBP and
AFP views, respectively, we introduce particular weights wl
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for the error function E(I, A◦B), and thus use a parameterized
variant cw(l) of c(l), which reads:

cw(l) = 1− wlE(I, A ◦B)/||I||. (5)

In order to emphasize the importance of the first factors in
the DBP view, the weights reflecting this view should be
increasing with increasing number l of factors. Therefore, the
same amount of error is penalized more with each further
factor. Analogously, in order to emphasize the need to explain
a prescribed portion of data in the AFP view, the weights
reflecting this view should be larger for a large value of
error E(I, A ◦ B) and smaller for a small value of error.
From the variety of many possible increasing functions we
use simple linear functions for weights: wl = l/k for the
DBP view and wl = 1 + (E(I, A ◦ B) − ε)/(||I|| − ε) for
the AFP view, where k are ε are the given values from the
definitions of the DBP and AFP problems introduced above,
respectively, and play a role of parameters here. In order to
reflect the combined view, the weights are simply averaged:
wl = (l/k + 1 + (E(I, A ◦B)− ε)/(||I|| − ε))/2.

As noted above, the modified coverage cw(l) defined by
(5) evaluates the quality of a decomposition consisting of the
first l factors delivered by a particular BMF algorithm, not
the quality of the algorithm alone. To evaluate the quality
of a BMF algorithm for a particular input data, we need to
evaluate the process of obtaining the final decomposition of
input data by the algorithm, not the final decomposition only
(to take into account that coverage is first steeply increasing
and grows toward full coverage). Hence we need to take into
account evaluations of all the decompositions produced by the
algorithm during its run, from the decomposition consisting of
no factors to the final decomposition consisting of l factors.
As our measure of quality of a BMF algorithm for a given
input data we propose the “area below the curve” of the
function cw(j) (j ∈ [0, l]); see Figure 1 (for simplicity, all wj’s
are considered 1 in the figure). Dividing the weights by the
average weight

∑l
j=0 wj/(l+1) (to eliminate the cumulative

effect of the weights) and scaling the area by the final number
l of factors plus one we get the following variant of a quality
measure of a BMF algorithm:

q = 1−

 l∑
j=0

wj
E(I, A ◦B)

||I||

 /

 l∑
j=0

wj

 . (6)

III. EXPERIMENTAL EVALUATION

In this section, we provide experimental evaluation of qual-
ity of selected BMF algorithms on selected datasets. Due to
limited scope, we restrict to the best known factorization algo-
rithms and to selected real datasets only. Other algorithms and
further datasets, including synthetic ones, shall be presented
in a full version of this paper. For each algorithm, we observe
its performance with respect to the DBP view, the AFP view,
and the combined view as described above.

0 jl = 99

1

c(j)

q

Fig. 1. Measure of quality of BMF algorithm

A. Datasets

We present results for the datasets Mushroom [1], Zoo [1],
Paleo1, DNA [19] and Firewall 1 [7], most of which are well
known and used in the literature on BMF. The characteristics
of the datasets shown in Table I are the number of objects
× number of attributes (column Size), percentage of 1s in I
(column Dens. 1), average value in the association matrix of
I [16] (column Avg. assoc.) and the median of support of
attributes (i.e. of the number of objects which have a given
attribute; column Med. support).

TABLE I
DATASETS AND THEIR CHARACTERISTICS

Dataset Size Dens. 1 Avg. assoc. Med. support
DNA 4590×392 0.015 0.060 0.010
Firewall 1 365×709 0.124 0.459 0.154
Mushroom 8124×119 0.193 0.193 0.074
Paleo 501×139 0.051 0.092 0.042
Zoo 101×28 0.305 0.298 0.233

B. Algorithms

We now briefly describe the algorithms used in our com-
parison.

ASSO [16], probably the most discussed BMF algorithm in
the data mining literature. The algorithm is designed to solve
the DBP and commits both types of errors, Eu and Eo.

GRECOND [2, Algorithm 2] performs a particular greedy
search “on demand” for formal concepts of the input matrix I
which are used as factors. It is designed to compute exact
decompositions. When stopped after computing the first k

1NOW public release 030717, available from
http://www.helsinki.fi/science/now/.
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factors or after the error E does not exceed ε, provides
approximate solutions to both DBP and AFP.

NAIVECOL [7] performs a greedy search for columns of
the input matrix I . This is the simplest algorithm considered
in this work. Like previous algorithm it can be used for both
AFP and DBP.

HYPER [27] produces a set F of rectangles (called hyper-
rectangles by the authors) in the input Boolean matrix I which
provide an exact decomposition of I .

PANDA (Patterns in Noisy Datasets) [13] is designed to
solve a modification of DBP which consists in employing the
MDLP.

GREESS [4] utilizes the formal concepts of I as factors
again. However, it makes use of so-called essential part of I .
It can be used for both AFP and DBP.

C. Assessment of Quality

Table II presents the numbers of factors required for pre-
scribed values of the coverage function c defined by (3) and
the coverage quality c(k) achieved for prescribed numbers k
of factors, representing the AFP and the DBP view of the
decomposition quality evaluation, respectively. The prescribed
values of c are given in %, i.e. c = 80% means c = 0.8. The
entry “NA” for prescribed values of c means that the algorithm
was not able to deliver a decomposition for the prescribed
value. If the number of factors delivered was smaller than k,
the coverage shown corresponds to the coverage of the set of
factors delivered.

As we can see, PANDA is not able to deliver decompositions
for higher values of c. The algorithm produces decomposi-
tions of low coverage quality, in most cases smaller than
0.8, apparently because it is based on the MDL principle
mentioned above instead of minimizing the error and thus
maximizing coverage. ASSO achieves high coverage quality
for the first few factors but as the number of factors increases,
its coverage is not so good compared to other algorithms,
mainly due to the overcover error which cannot be eliminated
once committed. Note also that GREESS algorithm delivers
exact decompositions (c = 100%) with the least number of
factors.

The values of our proposed BMF algorithm quality measure
q (6) for the evaluated algorithms and datasets are presented
in Table III. In this table, qc, for c ∈ [0, 1], means that the
function q was computed with the weights derived from the
AFP view with the parameter ε corresponding to the coverage
quality value c, i.e. ε = (1−c)·||I||. On the other hand, qk, for
k > 1, means that q was computed with the weights derived
from the DBP view with parameter k. Finally, qk,c means q
with both parameters, i.e. with k and ε corresponding to c as
above, for the combined view of the quality evaluation.

We can see that GRECOND algorithm ranked best both from
the AFP and the DBP view, followed by GREESS algorithm
with balanced values for the views. NAIVECOL algorithm
evaluates well in the AFP view but loses in the DBP view,
while ASSO algorithm performs the other way around – this

TABLE II
NUMBERS OF FACTORS AND COVERAGE QUALITY

Dataset A
S

S
O

G
R

E
C

O
N

D

N
A

IV
E

C
O

L

H
Y

P
E

R

PA
N

D
A

G
R

E
E

S
S

DNA c = 80% 75 106 144 181 NA 137
c = 90% 119 170 197 247 NA 190
c = 95% 173 241 242 302 NA 237

c = 100% NA 511 368 391 NA 372
k = 10 0.312 0.301 0.153 0.132 0.166 0.159
k = 20 0.437 0.415 0.250 0.218 0.166 0.260
k = 30 0.528 0.503 0.332 0.295 0.166 0.340
k = 40 0.592 0.569 0.401 0.360 0.166 0.409

Firewall 1 c = 80% 2 2 2 193 NA 2
c = 90% 3 4 4 223 NA 4
c = 95% 3 6 7 239 NA 6

c = 100% NA 66 71 365 NA 64
k = 10 0.917 0.981 0.976 0.083 0.491 0.981
k = 20 0.922 0.992 0.991 0.151 0.491 0.992
k = 30 0.924 0.996 0.996 0.203 0.491 0.997
k = 40 0.925 0.998 0.998 0.254 0.491 0.998

Mushroom c = 80% 19 29 32 42 NA 31
c = 90% 34 46 47 57 NA 47
c = 95% 50 62 62 70 NA 61

c = 100% NA 120 110 123 NA 105
k = 10 0.556 0.582 0.512 0.285 0.346 0.546
k = 20 0.652 0.715 0.674 0.502 0.346 0.696
k = 30 0.720 0.812 0.789 0.664 0.346 0.793
k = 40 0.765 0.873 0.862 0.780 0.346 0.865

Paleo c = 80% 83 86 83 83 NA 83
c = 90% 107 110 107 107 NA 106
c = 95% 122 127 122 122 NA 122

c = 100% NA 151 139 139 NA 145
k = 10 0.182 0.181 0.182 0.182 0.040 0.182
k = 20 0.314 0.310 0.314 0.314 0.040 0.314
k = 30 0.424 0.417 0.424 0.424 0.040 0.426
k = 40 0.517 0.511 0.517 0.517 0.040 0.522

Zoo c = 80% 7 9 9 15 NA 9
c = 90% 10 13 13 19 NA 13
c = 95% 15 17 17 22 NA 16

c = 100% NA 30 25 30 NA 25
k = 5 0.694 0.703 0.603 0.412 0.524 0.660

k = 10 0.868 0.853 0.834 0.652 0.539 0.849
k = 15 0.922 0.927 0.937 0.824 0.539 0.943
k = 20 0.943 0.973 0.985 0.928 0.539 0.985

is not surprising since the algorithm was designed for the DBP
problem. PANDA algorithm again evaluates very poorly.

IV. CONCLUSIONS

The aim of this paper is threefold. First, to point out an
important problem in BMF, namely assessment of quality of
BMF algorithms. Second, to identify key aspects of such
assessment. Third, to propose quantitative ways to assess
quality of BMF algorithms.

Our study revealed that quality assessment is paid a proper
attention in the literature. In particular, one reason is a surpris-
ing lack of work in applications of BMF in machine learning,
in spite of evidence of its usefulness, which contrasts with con-
siderable amount of existing work in development of new BMF
algorithms. We identified basic standpoints from which the
assessment of quality may be approached and proposed three
quantitative ways to assess quality. Two of them correspond to
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TABLE III
BMF ALGORITHM QUALITY

Dataset A
S

S
O

G
R

E
C

O
N

D

N
A

IV
E

C
O

L

H
Y

P
E

R

PA
N

D
A

G
R

E
E

S
S

DNA q0.8 0.690 0.724 0.664 0.639 0.166 0.669
q0.9 0.756 0.782 0.712 0.678 0.166 0.719
q0.95 0.785 0.804 0.732 0.691 0.166 0.739

q1 0.797 0.852 0.745 0.699 0.166 0.753
q10 0.312 0.301 0.153 0.132 0.167 0.159
q20 0.437 0.414 0.250 0.218 0.167 0.260
q30 0.527 0.503 0.332 0.295 0.167 0.340
q40 0.591 0.568 0.400 0.359 0.167 0.408

q10,0.9 0.823 0.883 0.792 0.747 0.166 0.799
q20,0.8 0.821 0.880 0.787 0.741 0.166 0.794

Firewall 1 q0.8 0.817 0.804 0.804 0.565 0.490 0.801
q0.9 0.886 0.909 0.901 0.600 0.490 0.907
q0.95 0.886 0.951 0.955 0.615 0.490 0.953

q1 0.923 0.996 0.996 0.627 0.490 0.996
q10 0.917 0.981 0.976 0.083 0.491 0.981
q20 0.922 0.992 0.991 0.150 0.491 0.992
q30 0.924 0.996 0.996 0.202 0.491 0.997
q40 0.925 0.998 0.998 0.253 0.491 0.998

q10,0.9 0.924 0.997 0.997 0.686 0.490 0.997
q20,0.8 0.924 0.997 0.997 0.678 0.490 0.997

Mushroom q0.8 0.622 0.740 0.729 0.657 0.344 0.733
q0.9 0.695 0.801 0.786 0.709 0.344 0.794
q0.95 0.725 0.827 0.810 0.728 0.344 0.819

q1 0.745 0.844 0.827 0.749 0.344 0.835
q10 0.556 0.582 0.511 0.285 0.346 0.545
q20 0.650 0.712 0.671 0.498 0.346 0.693
q30 0.715 0.805 0.781 0.654 0.346 0.786
q40 0.756 0.861 0.848 0.760 0.346 0.851

q10,0.9 0.764 0.876 0.863 0.798 0.344 0.870
q20,0.8 0.763 0.874 0.860 0.792 0.344 0.867

Paleo q0.8 0.567 0.565 0.567 0.567 0.040 0.570
q0.9 0.596 0.591 0.596 0.596 0.040 0.598
q0.95 0.605 0.600 0.605 0.605 0.040 0.607

q1 0.611 0.628 0.611 0.611 0.040 0.625
q10 0.181 0.181 0.181 0.181 0.040 0.181
q20 0.312 0.308 0.312 0.312 0.040 0.312
q30 0.419 0.412 0.419 0.419 0.040 0.420
q40 0.505 0.500 0.505 0.505 0.040 0.510

q10,0.9 0.662 0.679 0.662 0.662 0.040 0.677
q20,0.8 0.655 0.673 0.656 0.656 0.040 0.671

Zoo q0.8 0.723 0.741 0.699 0.628 0.515 0.731
q0.9 0.777 0.788 0.757 0.660 0.515 0.784
q0.95 0.805 0.808 0.779 0.671 0.516 0.802

q1 0.815 0.831 0.791 0.696 0.516 0.816
q5 0.690 0.699 0.599 0.409 0.522 0.656
q10 0.853 0.838 0.815 0.632 0.537 0.833
q15 0.898 0.899 0.899 0.772 0.537 0.910
q20 0.911 0.928 0.929 0.838 0.537 0.936

q10,0.9 0.844 0.864 0.832 0.745 0.521 0.853
q20,0.8 0.841 0.862 0.828 0.740 0.521 0.850

views known in the literature, the DBP and the AFP view. The
third one is new and corresponds to a combined view which
represents a natural requirement for a good BMF algorithm.
Our experimental evaluation demonstrates that the proposed
ways to assess quality are reasonable and demonstrates how
some of the best-known algorithms fare with respect to the
three views.

Further research needs to include the following topics:
development of further quantitative ways to quality assess-
ment; employment of BMF in machine learning and other

fields to obtain feedback regarding quality of BMF algorithms
from concrete employment of factors; development of further
criteria for quality assessment, such as the often discussed
capability of BMF algorithms to deal with noise in the input
data.

REFERENCES

[1] Bache K., Lichman M., UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml], Irvine, CA: University of California,
School of Information and Computer Science, 2013.

[2] Belohlavek R., Vychodil V., Discovery of optimal factors in binary data
via a novel method of matrix decomposition, J. Comput. Syst. Sci.
76(1)(2010), 3–20 (preliminary version in Proc. SCIS & ISCIS 2006).

[3] Belohlavek R., Outrata J., Trnecka M., Impact of Boolean factorization
as preprocessing methods for classification of Boolean data, Ann. Math.
Artif. Intell. 72(1–2)(2014), 3–22.

[4] Belohlavek R., Trnecka M., From-below approximations in Boolean
matrix factorization: Geometry and new algorithm, J. Comput. Syst.
Sci. 81(8)(2015), 1678–1697.

[5] Brualdi R. A., Ryser H. J., Combinatorial Matrix Theory, Cambridge
University Press, 1991.

[6] Chalermsook P., Heydrich S., Holm E., Karrenbauer A.: Nearly tight
approximability results for minimum biclique cover and partition. ESA
2014, pp. 235–246.

[7] Ene A. et al., Fast exact and heuristic methods for role minimization
problems. Proc. SACMAT 2008, pp. 1–10.

[8] Ganter B., Wille R., Formal Concept Analysis: Mathematical Founda-
tions, Springer, Berlin, 1999.
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