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Abstract We explore a utilization of Boolean matrix factorization for data preprocessing
in classification of Boolean data. In our previous work, we demonstrated that preprocess-
ing that consists in replacing the original Boolean attributes by factors, i.e. new Boolean
attributes obtained from the original ones by Boolean matrix factorization, can improve
classification quality. The aim of this paper is to explore the question of how the various
Boolean factorization methods that were proposed in the literature impact the quality of
classification. In particular, we compare five factorization methods, present experimental
results, and outline issues for future research.
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1 Problem setting

In Boolean data, objects are described by Boolean (binary, yes-no) attributes, i.e. each object
either has or does not have a given attribute. When it comes to classification of Boolean
data, one is interested in preprocessing of the input attributes to improve the quality of
classification. As with other classification problems, this task may be done many ways.
With Boolean input attributes, however, we might want to limit ourselves to preprocess-
ing with a clear semantics. Namely, as is known, see e.g. [2, 7, 11], applying to Boolean
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data the methods designed originally for real-valued data distorts the meaning of the data
and leads generally to results difficult to interpret. In [12, 13], we proposed a method for
preprocessing Boolean data based on the Boolean matrix factorization (BMF) method, i.e.
a decomposition method for Boolean matrices, developed in [2]. The method consists in
using for classification of the objects new Boolean attributes. The new attributes are actu-
ally the factors computed from the original attributes. The factors are (some of the) formal
concepts [6] associated to the input data. As is well known, formal concepts have a clear
meaning and are easy to interpret [2]. Moreover, there exists a natural transformation of the
objects between the space of the original attributes and the space of the factors [2] which is
conveniently utilized by the method. As with the other factor analysis methods which create
new attributes from the original ones, BMF belongs to the class of feature (new attribute)
extraction techniques for reducing dimensionality of data. However, as mentioned above,
the traditional well-known methods of feature extraction like principal component analysis
(and all its non-linear extensions) or latent semantic analysis, as well as factor analysis, are
designed originally for real-valued data and the resulting new attributes may be difficult to
interpret. Designed specifically to discrete attributes and thus relevant to us is the multi-
factor dimensionality reduction technique from gene research [4, 16] but by considering all
possible combinations of values of (each two) attributes it is computationally rather inten-
sive. BMF is thus a unique feature extraction method, designed specifically for Boolean
data, that transforms the given Boolean attributes to new attributes which are Boolean as
well. It has been demonstrated in [12, 13] that preprocessing based on BMF makes it pos-
sible to perform classification using a smaller number of input variables (factors instead of
original attributes) and yet reasonably improve the quality of classification. The papers pro-
vide an experimental analysis of when data with factors as new Boolean attributes enables
a better classification than data with the original attributes. In addition to the method from
[2], which is utilized in [12, 13], there exist several other BMF methods described in the
literature. In the present paper, we therefore look at the question of whether and how
the choice of these methods influences the quality of classification. In particular, we
focus on five BMF methods and provide an experimental evaluation using a similar sce-
nario as in [12, 13]. Note also that in addition to using the basic BMF method from [2],
[12, 13] propose a modification of this basic method and that this modification further
improves the quality of classification, in total by 3–5 %. In particular, the modification lies
in employing entropy of class labels assigned to objects in the greedy selection of factors
to produce factors which are, as new Boolean attributes, more suitable for the subsequent
classification. A brief demonstration of this improvement is included in the evaluation in
this paper. Nevertheless, in the evaluation of the five BMF method, we use the five meth-
ods unmodified in order to compare the methods as they are. The modification of these
methods to still improve the quality of classification, as in the case of the above-mentioned
modification of [2], is a subject of further research. Such modifications are not trivial
matters, see [12, 13], but are a rather promising challenge in view of the results for the
method from [2].

In the rest of this paper, we use the following notation. We denote by X = {1, . . . , n}
a set of objects which are given along with their input Boolean attributes forming the set
Y = {1, . . . ,m}, and a class attribute c. The input attributes are described by an n × m

Boolean matrix I with entries Iij (entry at row i and column j ), i.e. Iij ∈ {0, 1} for every
i, j . Alternatively, I may be considered as representing a binary relation between X and Y

and, hence, we may speak of a formal context 〈X,Y, I 〉, see [6]. Since there is no danger
of confusion, we conveniently switch between the matrix and relational way of looking at
things. The class attribute c may be conceived as a mapping c : X → C assigning to every
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object i ∈ X its class label c(i) in the set C of all class labels (note that C may contain more
than two labels).

The preprocessing method along with the five particular methods of Boolean matrix
factorization is described in Section 2. Section 3 describes the experiments and provides
their results. In Section 4 we conclude the paper and provide some directions for future
research.

2 Boolean matrix factorization and its utilization in classification

2.1 General BMF problem

We denote by {0, 1}n×m the set of all n × m Boolean matrices and by Ii and I j the ith
row and j th column, respectively, of matrix I . In BMF, the general aim is to find for a
given I ∈ {0, 1}n×m (and possibly other parameters, see Problem 1 and Problem 2) matrices
A ∈ {0, 1}n×k and B ∈ {0, 1}k×m for which

I is (approximately) equal to A ◦ B, (1)

with ◦ being the Boolean matrix product given by

(A ◦ B)ij =
k∨

l=1

Ail · Blj , (2)

where
∨

denotes the maximum and · the ordinary product. Such an exact or approximate
decomposition of I into A ◦ B corresponds to a discovery of k factors (new Boolean vari-
ables) that exactly or approximately explain the data. Namely, factor l = 1, . . . , k, may be
represented by A l (column l of A) and Bl (row l of B): Ail = 1 indicates that factor l
applies to object i while Blj indicates that attribute j is a particular manifestation of fac-
tor l (think of person P as object, “being fluent in English” as attribute, and “having good
education” as factor). The least k for which an exact decomposition I = A ◦ B exists is
called the Boolean (or Schein) rank of I [2, 8, 11]. Then, according to (2), the factor model
reads “object i has attribute j if and only if there exists factor l such that l applies to i and
j is a particular manifestation of l”. The matrices I , A, and B are usually called the object-
attribute matrix, the object-factor (or usage) matrix, and the factor-attribute (or basis vector)
matrix [2, 11].

The methods described in the literature are usually designed for two particular problems.
Consider the matrix metric [8, 11] (arising from the L1-norm || · || of matrices, or Hamming
weight in case of Boolean matrices) given by

E(C,D) = ||C −D|| =
∑m,n

i=1,j=1
|Cij −Dij |. (3)

E(I,A ◦ B) may be used to assess how well the product A ◦ B approximates the input
matrix I .

Problem 1

input: I ∈ {0, 1}n×m, positive integer k
output: A ∈ {0, 1}n×k and B ∈ {0, 1}k×m minimizing ||I −A ◦ B||.
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This problem is called the discrete basis problem (DBP) in [11]. In [2], the following
problem is considered:

Problem 2

input: I ∈ {0, 1}n×m, positive integer ε
output: A ∈ {0, 1}n×k and B ∈ {0, 1}k×m with k as small as possible such that
||I −A ◦ B|| ≤ ε.

The two problems reflect two important views on BMF, the first one emphasizing
the importance of the first k (presumably most important) factors, the second one
emphasizing the need to account for (and thus to explain) a prescribed portion of data.
Note that the problem of finding an exact decomposition of I with the least number
k of factors possible is a particular instance of Problem 2 (put ε = 0). Neither a
solution to Problem 1 nor to Problem 2 is unique, which is easy to observe. Namely,
according to the geometric view presented in [2], finding a decomposition of I using
k factors is equivalent to finding k rectangular areas in I filled with 1s such that every
1 in I is contained in at least one of this areas. Clearly, there are in general several
such sets of k rectangular areas. Note also that it follows from the known results
that both Problem 1 and Problem 2 are NP-hard optimization problems, see e.g. [2, 11],
and hence approximation algorithms are needed to obtain (suboptimal) solutions.

2.2 BMF in preprocessing of Boolean data

The idea may be described as follows. For a given set X of objects, set Y of attributes,
Boolean matrix I , and class attribute c, we compute n × k and k × m Boolean matrices
A and B , respectively, for which A ◦ B approximates I reasonably well (either according
to the scenario given by Problem 1 or Problem 2). Then, instead of the original instance
〈X,Y, I, c〉 of the classification problem, we consider a new instance given by 〈X,F,A, c〉,
with F = {1, . . . , k} denoting the factors, i.e. new Boolean attributes. Any classification
model developed for 〈X,F,A, c〉 may then be used to classify the objects described by
the original Boolean attributes from Y . Namely, one may utilize natural transformations
g : {0, 1}m → {0, 1}k and h : {0, 1}k → {0, 1}m between the space of the original attributes
and the space of factors which are given by

(g(P ))l =
m∧

j=1

(Blj → Pj ) and (h(Q))j =
k∨

l=1

(Ql · Blj )

for P ∈ {0, 1}m and Q ∈ {0, 1}k (
∧

and → denote minimum and implication). These
transformations are described in [2] to which we refer for more information. In particular,
given an object represented by P ∈ {0, 1}m (vector of values of the m input attributes),
we apply the classification method developed for 〈X,F,A, c〉 to g(P ), i.e. to the object
representation in the space of factors. Any classification model MF : {0, 1}k → C for
〈X,F,A, c〉 therefore induces a classification model MY : {0, 1}m → C by MY (P ) =
MF(g(P )) for any P ∈ {0, 1}m.

Note that since the number k of factors of I is usually smaller than the number m of
attributes (see [2], which means a reduction of dimensionality of data) and the transforma-
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tion of objects from the attribute space to the factor space is not an injective mapping, we
need to solve the problem of assigning a class label to objects in 〈X,F,A, c〉 with equal
g(P ) representations transformed from objects in 〈X,Y, I, c〉 with different P representa-
tions and different assigned class labels. We adopt the common solution of assigning to
such objects in 〈X,F,A, c〉 the majority class label of class labels assigned to the objects
in 〈X,Y, I, c〉.

2.3 Five methods for Boolean matrix factorization used in our experiments

TILING/ GRECON This algorithm is proposed in [7] and, independently but in a consider-
ably more efficient way, in [2]. The idea is the following. The algorithm iteratively selects
tiles, which is just a different name for formal concepts, in I until the tiles/formal con-
cepts cover all the 1s in I . The selection is performed in a greedy manner. In every step, we
select the tile/formal concept that covers most of the yet uncovered 1s in I . The selected
tiles/formal concepts are utilized in a simple way (in this algorithm as well as in GRE-
COND, GREESS, and GREESSQ): The (characteristic vectors of the) extents and intents
of the formal concepts form the columns and rows of A and B . That is, Ail = 1 iff the
extent of the lth formal concept contains object i, Blj = 1 iff the intent of the lth formal
concept contains attribute j . At the end, we obtain A and B for which I = A ◦ B . In [2],
the set of all tiles/formal concepts is computed in advance. In our paper, we compute this
set using the FCbO algorithm [14]. A possible difference in the algorithm from [7] and [2]
may result from a possibly different way of resolving ties when more tiles/formal concepts
cover the same number of uncovered 1s when a new tile/formal concept is selected in the
above-described greedy manner.

GRECOND This algorithm, described in [2] where it is called Algorithm 2, utilizes again
formal concepts of I as factors. As with TILING/GRECON, the algorithm is selecting formal
concepts of I , one by one, until a decomposition of I into A ◦ B is obtained. The algo-
rithm may be stopped after computing the first k concepts or whenever ||I − A ◦ B|| ≤ ε,
i.e. the algorithm may be used for solving Problem 1 as well as Problem 2, a feature
shared with TILING/GRECON. The formal concepts are selected in a greedy manner to
maximize the drop of the error function, in particular, on demand way, whence the name
GRE(edy)CON(concepts on)D(emand).

ASSO [11] works as follows. From the input n × m matrix I , the required number k of
factors, and parameters τ, w+, and w−, the algorithm computes an m × m matrix C in
which Cij = 1 if the confidence of the association rule {i} ⇒ {j } is at least τ . The rows
of C are then the candidate rows for matrix B . The actual k rows of B are selected from
the rows of C in a greedy manner using parameters w+ and w−. During the greedy
selection, the k columns of A are selected along with the k rows of B . This way, one
obtains from I two matrices A and B such that A ◦ B approximates I . Asso is designed
for Problem 1. There is no guarantee that ASSO computes an exact factorization of I even
for k = m, see [3]. In our experiments, we used τ = 1 and w+ = w− = 1 because
such choice guarantees that for k = m all the 1s in I will be covered by the computed
factors.

GREESS [3] utilizes the formal concepts of I as factors again. However, it makes use of
so-called essential part of I which is a matrix J of the same dimension as I which contains
only certain 1s of I and has the property that it is minimal such that the coverage of all 1s
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in J guarantees the coverage of all 1s in I . If I is clarified (i.e. does not contain duplicit
rows and columns), which is a reasonable assumption since clarification is easy to perform,
the essential part is unique. The 1s of the essential matrices correspond to certain minimal
intervals in the concept lattice of I. The fact that the coverage by factors of all such 1s
guarantees the coverage of all 1s in I appeared for the first time in [5], later from a somewhat
different but close point of view in [3]. Denoting by E(I ) the essential part of I , GREESS

computes the factors of E(I ) in a greedy manner, but not necessarily to obtain an exact
factorization of E(I ). Each such factor (formal concept of E(I )) defines a particular interval
in the concept lattice of I . In the search for factors of I , the factors are selected from these
intervals. Due to the properties of this strategy, it is sufficient to select at most one formal
concept from each such interval. GREESS may be used to solve Problem 1 and 2.

GREESSQ [3] utilizes attribute concepts of the essential part E(I ) of I (see above) and
an additional information that distinguishes the entries of I containing 1s. To compute
an exact decomposition of I , the algorithm first computes the essential matrix E(I )
and a new n × m matrix, Q, whose entries are positive integers. For Iij = 1,
Qij is the product of the number of rows of I that contain row i (including row
i itself) and the number of columns of I that contain column j (including col-
umn j ); if Iij = 0 then Qij = 0. It then selects in a greedy manner as fac-
tors of I the attribute concepts of I as follows. For every attribute j with a non-
empty column in E(I ), we compute its ↓I↑I -closure 〈C,D〉 (see [6]). We select such
〈C,D〉 that maximizes the sum of

∑
i∈C,j∈D Qij and the number of yet uncovered 1s

in E(I ). These steps are repeated until the selected factors cover I . The number of
factors obtained by GREESSQ for an exact decomposition of I is always less than or equal
to the number of the original attributes. Again, GREESSQ may be used to solve both
Problem 1 and 2.

As far as the performance of the five algorithms is concerned, we refer the reader
to [3] for details. In particular, as far as the quality of decompositions delivered is
concerned, for decompositions with a relatively small error (corresponding to coverage
of about 60 % of input data and higher), GREESS is the best algorithm, followed
by GRECOND, TILING/GRECON, which are of almost the same quality. GREESSQ
performs well for exact decompositions and almost exact decompositions but if only
a small coverage is required, i.e. a relatively large error is allowed, it fares poorly.
The reason is that it utilizes attribute concepts as factors which are rather narrow
and many of them are needed to cover a reasonable portion of data. On the other hand, if
we are interested in the first couple of factors only, ASSO performs very well and is com-
parable to GREESS or even better for the first two or three factors. ASSO, however, is
often not able to obtain an exact or almost exact decomposition for the reasons
described in [3]. When it comes to computational complexity of the algorithms,
GRECOND is the fastest, followed by GREESSQ which is about 20 % slower then
GRECOND, GREESS, which is about 2× slower, and ASSO, which is about 3–4× slower
than GRECOND.

While the above four algorithms have a polynomial time complexity, TILING/GRECON

has an exponential time complexity in the worst case because it browses through the
whole concept lattice of the input Boolean matrix, which has an exponential size in the
worst case. Correspondingly, TILING/ GRECON is by far the slowest algorithm. On the
other hand, this algorithm is of interest because it performs a greedy selection of formal
concepts in the whole concept lattice, implementing thus in full the idea of the basic set
cover algorithm.
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Table 1 Characteristics of datasets used in experiments

Dataset No. of attributes (Boolean) No. of objects Class distribution

breast-cancer 9 (51) 277 196/81

car 6 (21) 1728 1210/384/69/65

kr-vs-kp 36 (73) 3196 1669/1527

mushroom 22 (124) 5644 3488/2156

solar-flare 2 10 (42) 1066 147/211/239/95/43/331

tic-tac-toe 9 (27) 958 332/626

vote 16 (32) 232 124/108

zoo 15 (30) 101 41/20/5/13/4/8/10

3 Experiments

3.1 Datasets, classification methods, measures of classification performance

We performed a series of experiments to evaluate the impact of the five selected Boolean
matrix factorization methods described in Section 2.3 on classification of Boolean data
when using factors as new attributes. In the experiments, we evaluate and compare the clas-
sification performance of the models created by selected machine learning (ML) algorithms
from the data with the original attributes replaced by factors. The factors are computed from
input data by the five selected factorization methods. The ML algorithms used in the com-
parison are: the decision tree algorithms ID3 and C4.5 (entropy and information gain based),
the instance-based learning method NN (Nearest Neighbor) and Naive Bayes learning (NB)
[10, 15]. The algorithms were borrowed and run from Weka1, a software package that con-
tains implementations of machine learning and data mining algorithms in Java. Default
Weka’s parameters were used for the algorithms.

The experiments were done on selected public real-world datasets from the UCI Machine
Learning Repository [1]. The selected datasets are from various areas (medicine, indus-
try, games, biology, astronomy, politics, zoology). All the datasets contain only categorical
attributes with one class attribute. The datasets were cleared of objects containing missing
attribute values (we consider this approach, called listwise deletion and usually the most
preferable one, the most reasonable for Boolean matrix factorization). Basic characteris-
tics of the datasets are depicted in Table 1. Note that “9 (51)” means 9 original categorical
and 51 Boolean attributes obtained from the categorical attributes by plain nominal scal-
ing. The classification performance is evaluated using the 10-fold stratified cross-validation
test [9] and the results below are based on averaging 10 execution runs on each dataset with
randomly ordered objects.

To measure classification performance we use classification accuracy and weighted F-
measure (or F-score). Recall that classification accuracy (of classification model MY on
〈X,Y, I, c〉) is the ratio of the number of correctly classified objects (for all class labels) to
the number of all objects, i.e.

ca(MY , 〈X,Y, I, c〉) =
∑

l∈C

tpl

|X| ,

1Waikato Environment for Knowledge Analysis, available at http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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where tpl = |i ∈ X ; MY (Pi) = c(i) = l| (true positive classifications) and Pi ∈ {0, 1}m is
the representation of object i by the vector of values of them input attributes; The F-measure
(or, more precisely, F1-measure) for class label l is defined by

fml(MY , 〈X,Y, I, c〉) = 2 · tprl · ppvl
tprl + ppvl

= 2 · tpl

2 · tpl + f nl + fpl

,

where tprl = tpl
tpl+fpl

is the ratio of the number of correctly classified objects having l to the
number of all objects classified with l (so-called true positive rate in classification), ppvl =

tpl
tpl+f nl

is the ratio of the number of correctly classified objects having l to the number of
all objects having l (so-called positive predictive value), and fpl = |i ∈ X ; MY(Pi) =
l �= c(i)| is the number of false positive classifications (type I classification errors) and
f nl = |i ∈ X ; MY (Pi) �= c(i) = l| is the number of false negative classifications (type
II classification errors). Hence, the F-measure for a class label l is the harmonic mean of
tprl and ppvl . A weighted F-measure is then the average of F-measures for each class label
weighted by the class label rate among objects, i.e.

fm(MY , 〈X,Y, I, c〉) =
∑

l∈C

|i ∈ X ; c(i) = l|
|X| · fml(MY , 〈X,Y, I, c〉).

3.2 Results

The results of the experiments are depicted in Fig. 1, 2, 3, 4, 5, 6, 7, and 8. Each figure
contains two columns of four graphs for the four ML algorithms used and one additional
graph. The graphs in the two columns show the classification accuracy (left column) and
weighted F-measure (right column) on the preprocessed data, i.e. the data 〈X,F,A, c〉
described by factors, cf. Sections 2.2 and 2.3 for each of the five Boolean matrix fac-
torization methods. The measure rates of TILING/GRECON, GRECOND, ASSO, GREESS

and GREESSQ are depicted by the dots-and-dashed, dot-and-dashed, dotted, short-dashed
and dashed lines, respectively (note that the measure rates for the kr-vs-kp dataset and
TILING/GRECON algorithm are missing due to the number of formal concepts nearly
1 billion which the algorithm needs to compute all). Measure rate for the original data
〈X,Y, I, c〉 is depicted in each graph by a constant solid line. The x-axis in all graphs corre-
sponds to the factor decompositions obtained by the algorithms and, in particular, measures
the quantity

E(I, (A ◦ B))

|{〈i, j 〉 ; Iij = 1}| ,

see (3), i.e. a kind of relative error w.r.t. 1s of the input matrix I . The values on the
x-axis range from 0.9 (corresponding to a factorization with a small number of factors
with high E(I, (A ◦ B))) to 0 (corresponding to the number of factors which decompose
I exactly, i.e. I = A ◦ B). Note also that the measure rates for the ASSO algorithm
often do not go to the error rate 0 due to the fact the algorithm commits errors of overcov-
ering I (factors can cover zeroes in I ). Then the algorithm may not achieve the prescribed
error, i.e. stops at the minimum error it can achieve. The additional graph below the
two columns shows the number of factors of the preprocessed data in dependency on
the same relative error. The graph is useful in combination with the classification
quality graphs in showing the number of factors sufficient for a given quality of classifi-
cation, in particular the classification on the preprocessed data better than on the original
data.
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Fig. 2 Car dataset: classification accuracy (left column), weighted F-measure (right column) and number of
factors (bottom figure); all BMF algorithms have exactly the same performance
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Fig. 3 Kr-vs-kp dataset: classification accuracy (left column), weighted F-measure (right column) and
number of factors (bottom figure)
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Fig. 4 Mushroom dataset: classification accuracy (left column), weighted F-measure (right column) and
number of factors (bottom figure)
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Fig. 5 Solar-flare 2 dataset: classification accuracy (left column), weighted F-measure (right column) and
number of factors (bottom figure)
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Fig. 6 Tic-tac-toe dataset: classification accuracy (left column), weighted F-measure (right column) and
number of factors (bottom figure); all BMF algorithms have exactly the same performance
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Fig. 7 Vote dataset: classification accuracy (left column), weighted F-measure (right column) and number
of factors (bottom figure)
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Fig. 8 Zoo dataset: classification accuracy (left column), weighted F-measure (right column) and number of
factors (bottom figure)
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We can clearly see from the graphs that for almost all datasets the best results (in terms
of both classification accuracy and weighted F-measure) are obtained for preprocessed data,
for all ML algorithms used, by the GREESSQ algorithm, outperforming all other algorithms.
The reason seems to be that this algorithm is designed to utilize as factors the so-called
attribute concepts (formal concepts generated by a single attribute) and to cover by factors
primarily the areas of 1s in input matrix I which are covered by a small number of factors,
i.e. factors that may be regarded, in a sense, quasi-mandatory [2, 3] (recall from [2] that a
mandatory factor of a dataset is one that needs to be present in every exact decomposition
of the dataset). This approach tends to result in a non-redundant set of factors. Such factors
appear to be good new attributes for classification.

Poor classification performance of ASSO algorithm on some of the datasets (breast-
cancer, kr-vs-kp, mushroom), particularly for a relatively large decomposition error, i.e. a
small number of factors, is likely due to a different nature of factors used by the algorithm.
Namely, the factors used by ASSO need not be formal concepts, i.e. need not be rectangles
full of 1s. Instead, the rectangles corresponding to the factors computed by ASSO may con-
tain 0s. Such factors used as new Boolean attributes tend to result in worse classification
performance.

GRECOND and GREESS algorithms have quite similar performance. This is not
surprising due to a similar strategy of searching for factors. However, for relatively higher
number of factors, GREESS has worse performance. TILING/GRECON algorithm performs
similarly to GRECOND, on some datasets little bit worse, which is not surprising in view
of the fact that, as shown in [2], TILING/GRECON and GRECOND deliver factorizations of
similar quality (in terms of the number and size of factors).

Note that for most of the combinations of ML algorithm and dataset, with the exception
of the breast-cancer, car and tic-tac-toe datasets, the classification performance is better for
the original data than for the data preprocessed by Boolean matrix factorization (also with
exact or nearly exact matrix decomposition, i.e. the relative decomposition error equal to 0
or close to 0). However, as we can see from the graphs, sometimes the preprocessed data lead
to a better classification accuracy (and the weighted F-measure as well) than the original
data and this is true even for decomposition with a few factors covering less than 100 % of
input data. This can be seen for instance for the kr-vs-kp, solar-flare 2, vote and zoo datasets
and Nearest Neighbor ML algorithm or the mushroom dataset and Naive Bayes ML algo-
rithm. See [12, 13] for indications of when, i.e. for which datasets and ML algorithms, the
data with original attributes replaced by factors (computed by GRECOND algorithm) cov-
ering 100 % of input data leads to a better classification accuracy compared to the original
data. Furthermore, the next section discusses a significant improvement of the classification
quality with the preprocessed data.

The results for the breast-cancer, car and tic-tac-toe datasets are particularly interesting.
First, for the car and tic-tac-toe datasets, all the Boolean matrix factorization algorithms
have exactly the same performance, which is due to the very natural factors contained in the
datasets successfully found by all the BMF algorithms. And second, more importantly, the
preprocessed data, for all ML algorithms, lead to a better classification accuracy than the
original data, with a few factors covering less than 100 % of input data. See, in particular,
the graphs for ID.3 and Nearest Neighbor ML algorithms. For the breast-cancer dataset,
this is true for ID.3 and C4.5, i.e. the decision tree algorithms. Furthermore, the number of
factors leading to the best average percentage rates of correct classifications is such that the
factors cover just 40 % (which corresponds to 0.6 on the x-axis) of input data. This indicates
either many superfluous attributes or large noise in the input data that is overcome by using
the factors.
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Fig. 9 Modified GRECOND on vote dataset: classification accuracy (left column), weighted F-measure
(right column) and number of factors (bottom figure)
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3.3 Further improvement of classification quality

In this section we briefly demonstrate further improvement of classification quality when
using for data preprocessing a modified version of GRECOND algorithm from [2] proposed
in [12, 13] (see the introduction). Recall that the modification consists in employing the
entropy of class labels assigned to objects in the greedy selection of factors. Such factors
are, as new Boolean attributes, more preferable to the subsequent classification which gains
higher quality. We refer to [12, 13] for details on the modification and entropy employment.

The experimental setting remains the same as for the experiments above, we evaluate the
impact of the modified GRECOND algorithm on classification of Boolean data and com-
pare it to the unmodified GRECOND. The results for the vote dataset are depicted in Fig. 9.
The figure has the same content as Fig. 1, 2, 3, 4, 5, 6, 7, and 8, only the Boolean matrix
factorization methods are now the modified and unmodified GRECOND. The classifica-
tion measure and the number of factors rates of the modified GRECOND are depicted by
the dashed line while the rates of the unmodified GRECOND remain depicted by the
dot-and-dashed line.

First, we can see in the figure that the data preprocessed by the modified GRECOND with
factors selected based on entropy is classified significantly better than the data preprocessed
by the unmodified GRECOND. Second, the data preprocessed by the modified GRECOND
lead to a better classification than the original data, for all ML algorithms used, and this
happens already from a few factors covering just 25 % (0.75 on the x-axis) of input data.
At that point, the number of the factors is considerably lower than the number of factors
computed by the unmodified GRECOND that cover 100 % of the input data and even lower
(below half for the particular dataset) than the number of original Boolean attributes. Similar
results can be seen for several other datasets used in the previous experiments. It is likely that
starting from a certain (small) relative number of factors selected based on entropy of class
labels assigned to objects the factors appear to be very good new attributes for classification.

4 Conclusions

We presented an experimental study which shows that when Boolean matrix factorization
is used as a preprocessing technique in Boolean data classification in the scenario proposed
in [12, 13], the particular factorization algorithms impact in a significant way the accuracy
of classification. For this purpose, we compared five such algorithms from the literature. In
addition to demonstrating further the usefulness of Boolean matrix factorization for classifi-
cation of Boolean data, the paper emphasizes Boolean factorization as a data dimensionality
reduction technique that may be utilized in a similar way as the matrix-decomposition-based
methods designed for real-valued data.

In the future research, we intend to further investigate, possibly by theoretical analysis,
the role of Boolean factorization on classification accuracy in the presented scenario. The
aim of such research is to help us understand the experimental results reported in this paper
to help design new Boolean factorization algorithms which perform well in data prepro-
cessing for classification. In particular, we intend to utilize entropy (or other measure of the
distribution) of class labels among objects to which a factor applies and modify the present
algorithms by employment of such entropy to improve the quality of classification, which
has been done for GRECOND in [12, 13]. Furthermore, we intend to investigate and uti-
lize further appropriate transformation functions between the attribute and the factor spaces,
in particular those suitable for approximate factorizations. A comparison with other data
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dimensionality techniques, see e.g. the references in [17], in the presented scenario is also
an important topic for future research. In this respect, both the impact on the classifica-
tion accuracy as well as the transparency of the resulting classification model are important
aspects to be evaluated in such a comparison. In a broader perspective, our paper shall help
stimulate further research in utilization of Boolean matrix factorization in machine learning
and data mining that involves Boolean data.
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