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Abstract. The paper presents additional results on factorization by
similarity of fuzzy concept lattices. A fuzzy concept lattice is a hierar-
chically ordered collection of clusters extracted from tabular data. The
basic idea of factorization by similarity is to have, instead of a possibly
large original fuzzy concept lattice, its factor lattice. The factor lattice
contains less clusters than the original concept lattice but, at the same
time, represents a reasonable approximation of the original concept lat-
tice and provides us with a granular view on the original concept lattice.
The factor lattice results by factorization of the original fuzzy concept
lattice by a similarity relation. The similarity relation is specified by a
user by means of a single parameter, called a similarity threshold. Smaller
similarity thresholds lead to smaller factor lattices, i.e. to more compre-
hensible but less accurate approximations of the original concept lattice.
Therefore, factorization by similarity provides a trade-off between com-
prehensibility and precision. We first recall the notion of factorization.
Second, we present a way to compute the factor lattice of a fuzzy con-
cept lattice directly from input data, i.e. without the need to compute
the possibly large original concept lattice.

1 Introduction and Motivation

Formal concept analysis (FCA) is a method of exploratory data analysis which
aims at extracting a hierarchical structure of clusters from tabular data de-
scribing objects and their attributes. The history of FCA goes back to Wille’s
paper [19], foundations, algorithms, and a survey of applications can be found
in [11,12].

The clusters 〈A, B〉, called formal concepts, consist of a collection A (con-
cept extent) of objects and a collection B (concept intent) of attributes which
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are maximal with respect to the property that each object from A has every
attribute from B. The extent-intent definition of formal concepts goes back to
traditional Port-Royal logic. Alternatively, formal concepts can be thought of
as maximal rectangles contained in object-attribute data table. Formal con-
cepts can be partially ordered by a natural subconcept-superconcept relation
(narrower clusters are under larger ones). The resulting partially ordered set of
concepts forms a complete lattice, called a concept lattice, and can be visualized
by a labelled Hasse diagram. In the basic setting, the attributes are binary, i.e.
each table entry contains either 0 or 1. FCA was extended to data tables with
fuzzy attributes, i.e. tables with entries containing degrees to which a particular
attribute applies to a particular object, see e.g. [4,5,18].

A direct user comprehension and interpretation of the partially ordered set
of clusters may be difficult due to a possibly large number of clusters extracted
from a data table. A way to go is to consider, instead of the whole concept lat-
tice, its suitable factor lattice which can be considered a granular version of the
original concept lattice: its elements are classes of clusters and the factor lattice
is smaller. A method of factorization by a so-called compatible reflexive and
symmetric relation (a tolerance) on the set of clusters was described in [12]. In-
terpreting the tolerance relation as similarity on clusters/concepts, the elements
of the factor lattice are classes of pairwise similar clusters. The specification of
the tolerance relation is, however, left to the user. In [2], a method of parameter-
ized factorization of concept lattices computed from data with fuzzy attributes
was presented: the tolerance relation is induced by a threshold (parameter of fac-
torization) specified by a user. Using a suitable measure of similarity degree of
clusters/concepts (see later), the method does the following. Given a threshold a
(e.g. a number from [0, 1]), the elements of the factor lattice are similarity blocks
determined by a, i.e. maximal collections of formal concepts which are pairwise
similar to degree at least a. The smaller a, the smaller the factor lattice, i.e. the
larger the reduction. For a user, the factor lattice provides a granular view on
the original concept lattice, where the granules are the similarity blocks.

In order to compute the factor lattice directly by definition, we have to com-
pute the whole concept lattice (this can be done by an algorithm with a polyno-
mial time delay, see [3]) and then compute all the similarity blocks, i.e. elements
of the factor lattice (again, this can be accomplished by an algorithm with poly-
nomial time delay).

In this paper, we present a way to compute the factor lattice directly from
data. The resulting algorithm is significantly faster than computing first the
whole concept lattice and then computing the similarity blocks. In addition to
that, the smaller the similarity threshold, the faster the computation of the factor
lattice. This feature corresponds to a rule “the more tolerance to imprecision, the
faster the result” which is characteristic for human categorization. The method
presented can be seen as an alternative to a method of fast factorization of
concept lattices by similarity presented in [6].

The paper is organized as follows. Section 2 presents preliminaries on fuzzy
sets and formal concept analysis of data with fuzzy attributes. In Section 3, we
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present the main results. Examples and experiments demonstrating the speed-
up are contained in Section 4. Section 5 presents a summary and an outline of
a future research.

2 Preliminaries

2.1 Fuzzy Sets and Fuzzy Logic

In this section, we recall necessary notions from fuzzy sets and fuzzy logic. We
refer to [4,14,16] for further details. The concept of a fuzzy set generalizes that
of an ordinary set in that an element may belong to a fuzzy set in an interme-
diate truth degree not necessarily being 0 or 1. As a structure of truth degrees,
equipped with operations for logical connectives, we use complete residuated
lattices, i.e. structures L = 〈L, ∧, ∨, ⊗, →, 0, 1〉, where 〈L, ∧, ∨, 0, 1〉 is a com-
plete lattice with 0 and 1 being the least and greatest element of L, respec-
tively; 〈L, ⊗, 1〉 is a commutative monoid (i.e. ⊗ is commutative, associative,
and a⊗1 = 1⊗a = a for each a ∈ L); and ⊗ and → satisfy so-called adjointness
property, i.e. a ⊗ b ≤ c iff a ≤ b → c for each a, b, c ∈ L. Elements a of L are
called truth degrees, ⊗ and → are (truth functions of) “fuzzy conjunction” and
“fuzzy implication”.

The most commonly used set L of truth degrees is the real interval [0, 1];
with a ∧ b = min(a, b), a ∨ b = max(a, b). The three most important pairs of
“fuzzy conjunction” and “fuzzy implication” are: �Lukasiewicz, with a ⊗ b =
max(a + b − 1, 0), a → b = min(1 − a + b, 1); minimum, with a ⊗ b = min(a, b),
a → b = 1 if a ≤ b and = b else; and product, with a ⊗ b = a · b, a → b = 1
if a ≤ b and = b/a else. Often, we need a finite chain {a0 = 0, a1, . . . , an = 1}
(a0 < · · · < an); with corresponding �Lukasiewicz (ak ⊗ al = amax(k+l−n,0),
ak → al = amin(n−k+l,n)) or minimum (ak ⊗ al = amin(k,l), ak → al = an for
ak ≤ al and ak → al = al otherwise) connectives. Note that complete residuated
lattices are basic structures of truth degrees used in fuzzy logic, see [13,14].
Residuated lattices cover many particular structures, i.e. sets of truth degrees
and fuzzy logical connectives, used in applications of fuzzy logic.

A fuzzy set A in a universe set U is a mapping A : U → L with A(u) being
interpreted as a degree to which u belongs to A. To make L explicit, fuzzy sets
are also called L-sets. By LU or LU we denote the set of all fuzzy sets in universe
U , i.e. LU = {A | A is a mapping of U to L}. If U = {u1, . . . , un} then A is
denoted by A = { a1

/
u1, . . . , an

/
un} meaning that A(ui) equals ai. For brevity,

we omit elements of U whose membership degree is zero. A binary fuzzy relation
I between sets X and Y is a fuzzy set in universe U = X × Y , i.e. a mapping
I : X × Y → L assigning to each x ∈ X and y ∈ Y a degree I(x, y) to which x
is related to y.

For A ∈ LU and a ∈ L, a set aA = {u ∈ U | A(u) ≥ a} is called an a-cut of A
(the ordinary set of elements from U which belong to A to degree at least a); a
fuzzy set a → A in U defined by (a → A)(u) = a → A(u) is called an a-shift of
A; a fuzzy set a⊗A in U defined by (a⊗A)(u) = a⊗A(u) is called an a-multiple
of A.
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Given A, B ∈ LU , we define a subsethood degree S(A, B) =
∧

u∈U

(
A(u) →

B(u)
)
, which generalizes the classical subsethood relation ⊆. S(A, B) represents

a degree to which A is a subset of B. In particular, we write A ⊆ B iff S(A, B) = 1
(A is fully contained in B). As a consequence, A ⊆ B iff A(u) ≤ B(u) for each
u ∈ U .

2.2 Fuzzy Concept Lattices

A data table with fuzzy attributes can be identified with a triplet 〈X, Y, I〉
where X is a non-empty set of objects (table rows), Y is a non-empty set of
attributes (table columns), and I is a (binary) fuzzy relation between X and Y ,
i.e. I : X × Y → L. In formal concept analysis, the triplet 〈X, Y, I〉 is called a
formal fuzzy context. For x ∈ X and y ∈ Y , a degree I(x, y) ∈ L is interpreted
as a degree to which object x has attribute y (table entry corresponding to row
x and column y). For L = {0, 1}, formal fuzzy contexts can be identified in an
obvious way with ordinary formal contexts.

For fuzzy sets A ∈ LX and B ∈ LY we define fuzzy sets A⇑ ∈ LY and
B⇓ ∈ LX (denoted also A⇑I and B⇓I to make I explicit) by

A⇑(y) =
∧

x∈X(A(x) → I(x, y)), (1)

B⇓(x) =
∧

y∈Y (B(y) → I(x, y)). (2)

Using basic rules of predicate fuzzy logic one can see that A⇑ is a fuzzy set of
all attributes common to all objects from A, and B⇓ is a fuzzy set of all objects
sharing all attributes from B. The set

B (X, Y, I) = {〈A, B〉 | A⇑ = B, B⇓ = A}
of all fixpoints of 〈⇑, ⇓〉 is called a fuzzy concept lattice associated to 〈X, Y, I〉;
elements 〈A, B〉 ∈ B (X, Y, I) are called formal concepts of 〈X, Y, I〉; A and B
are called the extent and intent of 〈A, B〉, respectively. Under a partial order ≤
defined on B (X, Y, I) by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2,

B (X, Y, I) happens to be a complete lattice. The following theorem, so-called
main theorem of fuzzy concept lattices, describes the structure of B (X, Y, I), see
[4] for details.

Theorem 1. B (X, Y, I) is under ≤ a complete lattice where the infima and
suprema are given by

∧
j∈J 〈Aj , Bj〉 =

〈⋂
j∈J Aj , (

⋃
j∈J Bj)⇓⇑

〉
, (3)

∨
j∈J 〈Aj , Bj〉 =

〈
(
⋃

j∈J Aj)⇑⇓,
⋂

j∈J Bj

〉
. (4)

Moreover, an arbitrary complete lattice K = 〈K, ≤〉 is isomorphic to some
B (X, Y, I) iff there are mappings γ : X × L → K, μ : Y × L → K such that
(i) γ(X × L) is

∧
-dense in K, μ(Y × L) is

∨
-dense in K and

(ii) γ(x, a) ≤ μ(y, b) iff a ⊗ b ≤ I(x, y).
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3 Factorization of B (X, Y, I) by Similarity

3.1 The Notion of Factorization of Fuzzy Concept Lattice by
Similarity

We need to recall the parameterized method of factorization introduced in [2].
Given 〈X, Y, I〉, introduce a binary fuzzy relation ≈Ext on B (X, Y, I) by

(〈A1, B1〉 ≈Ext 〈A2, B2〉) =
∧

x∈X(A1(x) ↔ A2(x)) (5)

for 〈Ai, Bi〉 ∈ B (X, Y, I), i = 1, 2. Here, ↔ is a so-called biresiduum (i.e., a truth
function of equivalence connective) defined by

a ↔ b = (a → b) ∧ (b → a).

(〈A1, B1〉 ≈Ext 〈A2, B2〉), called a degree of similarity of 〈A1, B1〉 and 〈A2, B2〉,
is just the truth degree of “for each object x: x is covered by A1 iff x is covered
by A2”. One can also consider a fuzzy relation ≈Int defined by

(〈A1, B1〉 ≈Int 〈A2, B2〉) =
∧

y∈Y (B1(y) ↔ B2(y)). (6)

It can be shown [4] that measuring similarity of formal concepts via intents Bi

coincides with measuring similarity via extents Ai, i.e. ≈Ext coincides with ≈Int,
corresponding naturally to the duality of extent/intent view. As a result, we write
also just ≈ instead of ≈Ext and ≈Int. Note also that ≈ is a fuzzy equivalence
relation on B (X, Y, I).

Given a truth degree a ∈ L (a similarity threshold specified by a user), consider
the thresholded relation a≈ on B (X, Y, I) defined by

〈〈A1, B1〉, 〈A2, B2〉〉 ∈ a≈ iff (〈A1, B1〉 ≈ 〈A2, B2〉) ≥ a.

That is, a≈ is an ordinary relation “being similar to degree at least a” and
we thereby call it simply similarity (relation). a≈ is a reflexive and symmetric
binary relation (i.e., a tolerance relation) on B(X, Y, I). However, a≈ need not
be transitive (it is transitive if, for instance, a ⊗ b = a ∧ b holds true in L). a≈
is said to be compatible if it is preserved under arbitrary suprema and infima in
B(X, Y, I), i.e. if 〈cj , c

′
j〉 ∈ a≈ for j ∈ J implies both 〈

∧
j∈J cj ,

∧
j∈J c′j〉 ∈ a≈ and

〈
∨

j∈J cj ,
∨

j∈J c′j〉 ∈ a≈ for any cj , c
′
j ∈ B (X, Y, I), j ∈ J . We call ≈ compatible

if a≈ is compatible for each a ∈ L.
Call a subset B of B (X, Y, I) an a≈-block if it is a maximal subset of

B (X, Y, I) such that any two formal concepts from B are similar to degree
at least a, i.e., for any c1, c2 ∈ B we have 〈c1, c2〉 ∈ a≈. Note that the notion
of an a≈-block generalizes that of an equivalence class: if a≈ is an equivalence
relation then a≈-blocks are exactly the equivalence classes of a≈. Denote by
B (X, Y, I)/a≈ the collection of all a≈-blocks. It follows from the results on
tolerances on complete lattices [12] that if a≈ is compatible, then a≈-blocks
are special intervals in the concept lattice B (X, Y, I). For a formal concept
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〈A, B〉 ∈ B (X, Y, I), denote by 〈A, B〉a and 〈A, B〉a the infimum and the supre-
mum of the set of all formal concepts which are similar to 〈A, B〉 to degree at
least a, that is,

〈A, B〉a =
∧

{〈A′, B′〉 | 〈〈A, B〉, 〈A′, B′〉〉 ∈ a≈}, (7)
〈A, B〉a =

∨
{〈A′, B′〉 | 〈〈A, B〉, 〈A′, B′〉〉 ∈ a≈}. (8)

Operators . . .a and . . .a are important in description of a≈-blocks [12]:

Lemma 1. a≈-blocks are exactly intervals of B (X, Y, I) of the form
[〈A, B〉a, (〈A, B〉a)a], i.e.,

B (X, Y, I)/a≈ = {[〈A, B〉a, (〈A, B〉a)a] | 〈A, B〉 ∈ B (X, Y, I)}.

Note that an interval with lower bound 〈A1, B1〉 and upper bound 〈A2, B2〉
is the subset [〈A1, B1〉, 〈A2, B2〉] = {〈A, B〉 ∈ B(X, Y, I) | 〈A1, B1〉 ≤ 〈A, B〉 ≤
〈A2, B2〉}.

Now, define a partial order � on blocks of B (X, Y, I)/a≈ by

[c1, c2] � [d1, d2] iff c1 ≤ d1 (iff c2 ≤ d2) (9)

for any [c1, c2], [d1, d2] ∈ B (X, Y, I)/a≈. Then we have [2]:

Theorem 2. B (X, Y, I)/a≈ equipped with � is a partially ordered set which is
a complete lattice, the so-called factor lattice of B (X, Y, I) by similarity ≈ and
threshold a.

Elements of B (X, Y, I)/a≈ can be seen as similarity-based granules of formal
concepts/clusters from B (X, Y, I). B (X, Y, I)/a≈ thus provides a granular view
on the possibly large B (X, Y, I). For further details and properties of B (X, Y, I)/
a≈ we refer to [2].

3.2 Similarity-Based Factorization of Input Data 〈X, Y, I〉 and
Direct Computing of the Factor Lattice B (X, Y, I)/a≈

We now turn our attention to the problem of how to compute the factor lattice.
One way is to follow the definition and to split the computation of B (X, Y, I)/a≈
into two steps: (1) compute the possibly large fuzzy concept lattice B (X, Y, I)
and (2) compute the a≈-blocks, i.e. the elements of B (X, Y, I)/a≈. Although
there are efficient algorithms for both (1) and (2), computing B (X, Y, I)/a≈ this
way is time demanding. In what follows, we present a way to obtain B (X, Y, I)/
a≈ directly, without the need to compute B (X, Y, I) first and then to compute
the blocks of a≈. We need the following lemmas.

Lemma 2 ([6]). For 〈A, B〉 ∈ B (X, Y, I), we have

(a) 〈A, B〉a =
〈
(a ⊗ A)⇑⇓, a → B

〉
,

(b) 〈A, B〉a =
〈
a → A, (a ⊗ B)⇓⇑

〉
.
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Lemma 3. If A is an extent then we have a → A = (a → A)⇑⇓; similarly for
an intent B.

Proof. Follows from Lemma 2, cf. [4].

Remark 1. Thus we have (〈A, B〉a)a =
〈
a → (a ⊗ A)⇑⇓, (a ⊗ (a → B))⇓⇑

〉
.

Let us now introduce the construction of a similarity-based factorization as-
signing to 〈X, Y, I〉 a “factorized data” 〈X, Y, I〉/a. For a formal fuzzy context
〈X, Y, I〉 and a (user-specified) threshold a ∈ L, introduce a formal fuzzy context
〈X, Y, I〉/a by

〈X, Y, I〉/a := 〈X, Y, a → I〉.

〈X, Y, I〉/a will be called the factorized context of 〈X, Y, I〉 by threshold a. That
is, 〈X, Y, I〉/a has the same objects and attributes as 〈X, Y, I〉, and the incidence
relation of 〈X, Y, I〉/a is a → I. Since

(a → I)(x, y) = a → I(x, y),

computing 〈X, Y, I〉/a from 〈X, Y, I〉 is easy. Note that objects and attributes
are more similar in 〈X, Y, I〉/a than in the original context 〈X, Y, I〉. Indeed, for
any x1, x2 ∈ X and y1, y2 ∈ Y one can easily verify that

I(x1, y1) ↔ I(x2, y2) ≤ (a → I)(x1, y1) ↔ (a → I)(x2, y2)

which intuitively says that in the factorized context, the table entries are more
similar (closer) than in the original one.

A way to obtain the factor lattice B (X, Y, I)/a≈ directly from input data
〈X, Y, I〉 is based on the next theorem.

Theorem 3. For a formal fuzzy context 〈X, Y, I〉 and a threshold a ∈ L we have

B (X, Y, I)/a≈ ∼= B (X, Y, a → I).

In words, B (X, Y, I)/a≈ is isomorphic to B (X, Y, a → I). Moreover, under the
isomorphism, [〈A1, B1〉, 〈A2, B2〉] ∈ B (X, Y, I)/a≈ corresponds to 〈A2, B1〉 ∈
B (X, Y, a → I).

Proof. Let ⇑ and ⇓ denote the operators (1) and (2) induced by I and ⇑a and
⇓a denote the operators induced by a → I, that is, for A ∈ LX and B ∈ LY we
have

A⇑a(y) =
∧

x∈X

A(x) → (a → I)(x, y),

B⇓a(y) =
∧

y∈Y

B(y) → (a → I)(x, y).
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Take any A ∈ LX . Then we have

A⇑a(y) =
∧

x∈X

A(x) → (a → I(x, y)) =

=
∧

x∈X

a → (A(x) → I(x, y)) =

= a →
∧

x∈X

(A(x) → I(x, y)) = a → A⇑(x),

and

A⇑a⇓a(x) =
∧

y∈Y

A⇑a(y) → (a → I(x, y)) =

=
∧

y∈Y

a → (A⇑a(y) → I(x, y)) = a →
∧

y∈Y

(A⇑a(y) → I(x, y)) =

= a →
∧

y∈Y

([
∧

x∈X

a → (A(x) → I(x, y))] → I(x, y)) =

= a →
∧

y∈Y

([
∧

x∈X

(a ⊗ A(x)) → I(x, y)] → I(x, y)) =

= a →
∧

y∈Y

((a ⊗ A)⇑(x) → I(x, y)) = a → (a ⊗ A)⇑⇓(x),

i.e.
A⇑a = a → A⇑ and A⇑a⇓a = a → (a ⊗ A)⇑⇓. (10)

Now, let [〈A1, B1〉, 〈A2, B2〉] ∈ B (X, Y, I)/a≈. By Lemmas 1, 2 and 3, there
is 〈A, B〉 ∈ B (X, Y, I) such that 〈A1, B1〉 = 〈A, B〉a = 〈(a ⊗ A)⇑⇓, a → B〉
and 〈A2, B2〉 = (〈A, B〉a)a = 〈a → (a ⊗ A)⇑⇓, (a ⊗ (a → B))⇓⇑〉. Since 〈A, B〉 =
〈A, A⇑〉, (10) yields

A2 = a → (a ⊗ A)⇑⇓ = A⇑a⇓a

and
B1 = a → B = a → A⇑ = A⇑a .

This shows 〈A2, B1〉 ∈ B (X, Y, a → I).
Conversely, if 〈A2, B1〉 ∈ B (X, Y, a → I) then using (10), B1 = A⇑a

2 =
a → A⇑

2 and A2 = A⇑a⇓a

2 = a → (a ⊗ A2)⇑⇓. By Lemma 1 and Lemma 2,
[〈B⇓

1 , B1〉, 〈A2, A
⇑
2 〉] ∈ B (X, Y, I)/a≈. The proof is complete.

Remark 2. (1) The blocks of B (X, Y, I)/a≈ can be reconstructed from the formal
concepts of B (X, Y, a → I):
If 〈A, B〉 ∈ B (X, Y, a → I) then [〈B⇓, B〉, 〈A, A⇑〉] ∈ B (X, Y, I)/a≈.
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(2) Computing B (X, Y, a → I) means computing of the ordinary fuzzy con-
cept lattice. This can be done by an algorithm of polynomial time delay com-
plexity, see [3].

This shows a way to obtain B (X, Y, I)/a≈ without computing first the whole
B (X, Y, I) and then computing the factorization. Note that in [6], we showed an
alternative way to speed up the computation of B (X, Y, I)/a≈ by showing that
suprema of blocks of B (X, Y, I)/a≈ are fixed points of a certain fuzzy closure
operator. Compared to that, the present approach shows that the blocks of
B (X, Y, I)/a≈ can be interpreted as formal concepts in a “factorized context”
〈X, Y, I〉/a.

4 Examples and Experiments

In this section we demonstrate the effect of reduction of size of a fuzzy concept
lattice by factorization by similarity, and the speed-up achieved by our algorithm
based on Theorem 3. By reduction of size of a fuzzy concept lattice given by
a data table 〈X, Y, I〉 with fuzzy attributes and a user-specified threshold a, we
mean the ratio

|B(X, Y, I)/a≈|
|B(X, Y, I)|

of the number |B(X, Y, I)/a≈| of elements of B(X, Y, I)/a≈, i.e. the number of el-
ements of the factor lattice, to the number |B(X, Y, I)| of elements of B(X, Y, I),

Table 1. Data table with fuzzy attributes

1 2 3 4 5 6 7
1 Czech 0.4 0.4 0.6 0.2 0.2 0.4 0.2
2 Hungary 0.4 1.0 0.4 0.0 0.0 0.4 0.2
3 Poland 0.2 1.0 1.0 0.0 0.0 0.0 0.0
4 Slovakia 0.2 0.6 1.0 0.0 0.2 0.2 0.2
5 Austria 1.0 0.0 0.2 0.2 0.2 1.0 1.0
6 France 1.0 0.0 0.6 0.4 0.4 0.6 0.6
7 Italy 1.0 0.2 0.6 0.0 0.2 0.6 0.4
8 Germany 1.0 0.0 0.6 0.2 0.2 1.0 0.6
9 UK 1.0 0.2 0.4 0.0 0.2 0.6 0.6
10 Japan 1.0 0.0 0.4 0.2 0.2 0.4 0.2
11 Canada 1.0 0.2 0.4 1.0 1.0 1.0 1.0
12 USA 1.0 0.2 0.4 1.0 1.0 0.2 0.4

attributes: 1 – High Gross Domestic Product per capita (USD), 2 – High Consumer
Price Index (1995=100) , 3 – High Unemployment Rate (percent - ILO), 4 – High
production of electricity per capita (kWh), 5 – High energy consumption per capita
(GJ), 6 – High export per capita (USD), 7 – High import per capita (USD)
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Table 2. �Lukasiewicz fuzzy logical connectives, B (X, Y, I) of data from Tab. 1:
|B (X, Y, I)| = 774, time for computing B (X, Y, I) = 2292 ms; table entries for thresh-
olds a = 0.2, 0.4, 0.6, 0.8.

0.2 0.4 0.6 0.8
size |B (X, Y, I)/a≈| 8 57 193 423
size reduction 0.010 0.073 0.249 0.546
naive algorithm (ms) 8995 9463 8573 9646
our algorithm (ms) 23 214 383 1517
speed-up 391.09 44.22 22.38 6.36
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Fig. 1. Size reduction and speed-up from Tab. 2

Table 3. Minimum-based fuzzy logical connectives, B (X, Y, I) of data from Tab. 1:
|B (X, Y, I)| = 304, time for computing B (X, Y, I) = 341 ms; table entries for thresholds
a = 0.2, 0.4, 0.6, 0.8.

0.2 0.4 0.6 0.8
size |B (X, Y, I)/a≈| 8 64 194 304
size reduction 0.026 0.210 0.638 1.000
naive algorithm (ms) 1830 1634 3787 4440
our algorithm (ms) 23 106 431 1568
speed-up 79.57 15.42 8.79 2.83

i.e. the number of elements of the original lattice. By a speed-up we mean the
ratio of the time for computing the factor lattice B(X, Y, I)/a≈ by a naive algo-
rithm to the time for computing B(X, Y, I)/a≈ by our algorithm. By “our algo-
rithm” we mean the algorithm computing B (X, Y, I)/a≈ directly by reduction
to the computation of B(〈X, Y, I〉/a), described in subsection 3.2. By “naive al-
gorithm” we mean computing B (X, Y, I)/a≈ by first generating B (X, Y, I) (by
a polynomial time-delay algorithm from [3]) and subsequently generating the
a≈-blocks by producing [〈A, B〉a, (〈A, B〉a)a].

Consider the data table depicted in Tab. 1. The data table contains countries
(objects from X) and some of their economic characteristics (attributes from
Y ). The values of the characteristics are scaled to interval [0, 1] so that the
characteristics can be considered as fuzzy attributes.
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Fig. 2. Size reduction and speed-up from Tab. 3

Tab. 2 summarizes the results when using �Lukasiewicz fuzzy logical operations
and threshold values a = 0.2, 0.4, 0.6, 0.8. The whole concept lattice B (X, Y, I)
contains 774 formal concepts, computing B (X, Y, I) using the polynomial time
delay algorithm from [3] takes 2292ms.

The example demonstrates that smaller thresholds lead to both larger size
reduction and speed-up. Furthermore, we can see that the time needed for com-
puting the factor lattice B (X, Y, I)/a≈ is smaller than time for computing the
original concept lattice B (X, Y, I).

Note also that since computing B (X, Y, I) takes 2292 ms, most of the time
consumed by the naive algorithm is spent on factorization. For instance, for
a = 0.2, 8995 ms is consumed in total of which 2292 ms is spent on computing
B (X, Y, I) and 6703 = 8995−2292 ms is spent on factorization, i.e. on computing
B (X, Y, I)/a≈ from B (X, Y, I).

Fig. 1 contains graphs depicting reduction |B (X, Y, I)/a≈|/|B (X, Y, I)| and
speed-up from Tab. 2.

Tab. 3 and Fig. 2 show the same characteristics when using the minimum-
based fuzzy logical operations (instead of �Lukasiewicz fuzzy logical operations).

5 Conclusions and Future Research

We presented an additional method of factorization of fuzzy concept lattices. A
factor lattice represents an approximate version of the original fuzzy concept lat-
tice. The size of the factor lattice is controlled by a user-specified threshold. The
factor lattice can be computed directly from input data, without first computing
the possibly large original fuzzy concept lattice.

Our future research will focus on factorization of further types of fuzzy concept
lattices. In particular, [7] presents a method of fast factorization of fuzzy concept
lattices with hedges, see [8], which can be seen as a generalization of the method
from [6]. Fuzzy concept lattices with hedges serve as a common platform for some
of the types of fuzzy concept lattices, see [9], and also [10,17]. An immediate
problem is whether and to what extent the results presented in this paper can
be accommodated for the setting of fuzzy concept lattices with hedges.
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