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Abstract. We focus on two approaches to formal concept analysis
(FCA) of data with fuzzy attributes recently proposed in the literature,
namely, on the approach via hedges and the approach via thresholds.
Both of the approaches present parameterized ways to FCA of data with
fuzzy attributes. Our paper shows basic relationships between the two of
the approaches. Furthermore, we show that the approaches can be com-
bined in a natural way, i.e. we present an approach in which one deals
with both thresholds and hedges. We argue that while the approach via
thresholds is intuitively appealing, it can be considered a special case of
the approach via hedges. An important role in this analysis is played by
so-called shifts of fuzzy attributes which appeared earlier in the study
of factorization of fuzzy concept lattices. In addition to fuzzy concept
lattices, we consider the idea of thresholds for the treatment of attribute
implications from tables with fuzzy attributes and prove basic results
concerning validity and non-redundant bases.

1 Introduction and Motivation

Recently, there have been proposed several approaches to formal concept anal-
ysis (FCA) of data with fuzzy attributes, i.e. attributes which apply to objects
to various degrees taken from a scale L of degrees. In particular, parameterized
approaches are of interest where the parameters control the number of the ex-
tracted formal concepts. In this paper, we deal with two of these approaches,
namely the approach via hedges and the approach via thresholds. Hedges were
proposed as parameters for formal concept analysis of data with fuzzy attributes
in [10], see also [8, 11]. For particular choices of hedges, one obtains the original
approach by Pollandt and Bělohlávek [3, 23] and one-sided fuzzy approach, see
[9, 22, 14]. The idea of thresholds in formal concept analysis of data with fuzzy
attributes is the following. In a fuzzy setting, given a collection A of objects, the
collection A↑ of all attributes shared by all objects from A is in general a fuzzy
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118 R. Bělohlávek, J. Outrata, and V. Vychodil

set, i.e. attributes y belong to A↑ in various degrees A↑(y) ∈ L. It is then intu-
itively appealing to pick a threshold δ and to consider a set δA↑ = {y | A↑(y) ≥ δ}
of all attributes which belong to A↑ in a degree greater than or equal to δ. With
δ = 1, this approach was proposed independently in [22, 14]. In [15], this was ex-
tended to arbitrary δ. However, the extent- and intent-forming operators defined
in [15] do not form a Galois connection. This shortcoming was recognized and
removed in [16] where the authors proposed new operators based on the idea of
thresholds for general δ.

In our paper, we take a closer look at [16]. We show that while conceptually
natural and appealing, the approach via thresholds, as proposed in [16], can
be seen as a particular case of the approach via hedges. In particular, given a
data with fuzzy attributes, the fuzzy concept lattices induced by the operators
of [16] are isomorphic (and in fact, almost the same) to fuzzy concept lattices
with hedges induced from a data containing so-called shifts of the given fuzzy
attributes. This observation suggests a combination of the approaches via hedges
and via thresholds which we also explore. It is interesting to note that shifts
of fuzzy attributes play an important role for an efficient computation in a
factorization by similarity of a fuzzy concept lattice, see [2, 7]. In addition to
that, we apply the idea of thresholds to attribute implications from data with
fuzzy attributes and extend some of our previous results, see e.g. [6, 12].

2 Fuzzy Concept Lattices with Hedges and Thresholds

2.1 Preliminaries from Fuzzy Logic

We first briefly recall the necessary notions from fuzzy sets and fuzzy logic (we
refer to [3, 20] for further details). As a structure of truth degrees, we use an
arbitrary complete residuated lattice L = 〈L, ∧, ∨, ⊗, →, 0, 1〉, i.e. 〈L, ∧, ∨, 0, 1〉
is a complete lattice with 0 and 1 being the least and greatest element of L, re-
spectively (for instance, L is [0, 1], a finite chain, etc.); 〈L, ⊗, 1〉 is a commutative
monoid (i.e. ⊗ is commutative, associative, and a⊗1 = 1⊗a = a for each a ∈ L);
and ⊗ and → satisfy so-called adjointness property, i.e. a ⊗ b ≤ c iff a ≤ b → c
for each a, b, c ∈ L. Elements a of L are called truth degrees (usually, L ⊆ [0, 1]).
⊗ and → are (truth functions of) “fuzzy conjunction” and “fuzzy implication”.
Note that in [16], the authors do not require commutativity of ⊗ (but this plays
no role in our note). Note that complete residuated lattices are basic structures
of truth degrees used in fuzzy logic, see [18, 20]. Residuated lattices cover many
structures used in applications.

For a complete residuated lattice L, a (truth-stressing) hedge is a unary func-
tion ∗ satisfying (i) 1∗ = 1, (ii) a∗ ≤ a, (iii) (a → b)∗ ≤ a∗ → b∗, (iv) a∗∗ = a∗,
for all a, b ∈ L. A hedge ∗ is a (truth function of) logical connective “very true”
[21]. The largest hedge (by pointwise ordering) is identity, the least hedge is
globalization which is defined by a∗ = 1 for a = 1 and a∗ = 0 for a < 1.

For L = {0, 1}, there exists exactly one complete residuated lattice L (the
two-element Boolean algebra) and exactly one hedge (the identity on {0, 1}).
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By LU or LU we denote the set of all fuzzy sets (L-sets) in universe U , i.e.
LU = {A | A is a mapping of U to L}, A(u) being interpreted as a degree to
which u belongs to A; by 2U we denote the set of all ordinary subsets of U ,
and by abuse of notation we sometimes identify ordinary subsets of U with crisp
fuzzy sets from LU , i.e. with those A ∈ LU for which A(u) = 0 or A(u) = 1 for
each u ∈ U . For A ∈ LU and a ∈ L, a set aA = {u ∈ U | A(u) ≥ a} is called an
a-cut of A; a fuzzy set a → A in U defined by (a → A)(u) = a → A(u) is called
an a-shift of A. Given A, B ∈ LU , we define a subsethood degree

S(A, B) =
∧

u∈U

(
A(u) → B(u)

)
,

which generalizes the classical subsethood relation ⊆. S(A, B) represents a de-
gree to which A is a subset of B. In particular, we write A ⊆ B iff S(A, B) = 1
(A is fully contained in B). As a consequence, A ⊆ B iff A(u) ≤ B(u) for each
u ∈ U .

2.2 Fuzzy Concept Lattices with Hedges

A formal fuzzy context can be identified with a triplet 〈X, Y, I〉 where X is a
non-empty set of objects, Y is a non-empty set of attributes, and I is a fuzzy
relation between X and Y , i.e. I : X × Y → L. For x ∈ X and y ∈ Y , a degree
I(x, y) ∈ L is interpreted as a degree to which object x has attribute y. A formal
fuzzy context 〈X, Y, I〉 can be seen as a data table with fuzzy attributes with
rows and columns corresponding to objects and attributes, and table entries
filled with truth degrees I(x, y). For L = {0, 1}, formal fuzzy contexts can be
identified in an obvious way with ordinary formal contexts.

Let ∗X and ∗Y be hedges. For fuzzy sets A ∈ LX and B ∈ LY , consider fuzzy
sets A↑ ∈ LY and B↓ ∈ LX (denoted also A↑I and B↓I to make I explicit)
defined by

A↑(y) =
∧

x∈X(A∗X (x) → I(x, y)), (1)

B↓(x) =
∧

y∈Y (B∗Y (y) → I(x, y)). (2)

Using basic rules of predicate fuzzy logic, A↑ is a fuzzy set of all attributes
common to all objects (for which it is very true that they are) from A, and B↓

is a fuzzy set of all objects sharing all attributes (for which it is very true that
they are) from B. The set

B (X∗X , Y ∗Y , I) = {〈A, B〉 | A↑ = B, B↓ = A}

of all fixpoints of 〈↑, ↓〉 is called a fuzzy concept lattice of 〈X, Y, I〉; elements
〈A, B〉 ∈ B (X∗X , Y ∗Y , I) will be called formal concepts of 〈X, Y, I〉; A and B
are called the extent and intent of 〈A, B〉, respectively. Under a partial order ≤
defined on B (X∗X , Y ∗Y , I) by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2,

B (X∗X , Y ∗Y , I) happens to be a complete lattice and we refer to [10] for results
describing the structure of B (X∗X , Y ∗Y , I). Note that B (X∗X , Y ∗Y , I) is the
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basic structure used for formal concept analysis of the data table represented by
〈X, Y, I〉.
Remark 1. Operators ↑ and ↓ were introduced in [8, 10] as a parameterization of
operators A⇑(y) =

∧
x∈X(A(x) → I(x, y)) and B⇓(x) =

∧
y∈Y (B(y) → I(x, y))

which were studied before, see [1, 4, 23]. Clearly, if both ∗X are ∗Y are identities
on L, ↑ and ↓ coincide with ⇑ and ⇓, respectively. If ∗X or ∗Y is the identity on L,
we omit ∗X or ∗Y in B (X∗X , Y ∗Y , I), e.g. we write just B (X∗X , Y, I) if ∗Y = idL.

2.3 Fuzzy Concept Lattices Defined by Thresholds

In addition to the pair of operators ⇑ : LX → LY and ⇓ : LY → LX , the authors
in [16] define pairs of operators (we keep the notation of [16]) � : 2X → 2Y

and � : 2Y → 2X , � : 2X → LY and � : LY → 2X , and ♦ : LX → 2Y and
♦ : 2Y → LX , as follows. Let δ be an arbitrary truth degree from L (δ plays a
role of a threshold). For A ∈ LX , C ∈ 2X , B ∈ LY , D ∈ 2Y define C� ∈ 2Y and
D� ∈ 2X by

C� = {y ∈ Y |
∧

x∈X(C(x) → I(x, y)) ≥ δ}, (3)
D� = {x ∈ X |

∧
y∈Y (D(y) → I(x, y)) ≥ δ}; (4)

C� ∈ LY and B� ∈ 2X by

C�(y) = δ →
∧

x∈C I(x, y), (5)
B� = {x ∈ X |

∧
y∈Y (B(y) → I(x, y)) ≥ δ}; (6)

and A♦ ∈ 2Y and D♦ ∈ LX by

A♦ = {y ∈ Y |
∧

x∈X(A(x) → I(x, y)) ≥ δ}, (7)

D♦(x) = δ →
∧

y∈D I(x, y), (8)

for each x ∈ X , y ∈ Y .
Denote now the corresponding set of fixpoints of these pairs of operators by

B (X�, Y�, I) = {〈A, B〉 ∈ 2X × 2Y | A� = B, B� = A},

B (X�, Y�, I) = {〈A, B〉 ∈ 2X × LY | A� = B, B� = A},

B (X♦, Y♦, I) = {〈A, B〉 ∈ LX × 2Y | A♦ = B, B♦ = A},

B (X⇑, Y⇓, I) = {〈A, B〉 ∈ LX × LY | A⇑ = B, B⇓ = A} (= B (X, Y, I)).

2.4 Fuzzy Concept Lattices with Hedges and Thresholds

We now introduce a new pair of operators induced by a formal fuzzy context
〈X, Y, I〉. For δ, ε ∈ L, fuzzy sets A ∈ LX and B ∈ LY , consider fuzzy sets
A↑I,δ ∈ LY and B↓I,ε ∈ LX defined by

A↑I,δ (y) = δ →
∧

x∈X(A∗X (x) → I(x, y)), (9)

B↓I,ε(x) = ε →
∧

y∈Y (B∗Y (y) → I(x, y)). (10)

We will often write just A↑ and B↓ if I, δ, and ε are obvious, particularly if
δ = ε.
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Remark 2. Note that, due to the properties of →, we have that A↑I,δ (y) = 1 iff

δ ≤
∧

x∈X(A∗X (x) → I(x, y)),

i.e. iff the degree to which y is shared by all objects from A is at least δ. In
general, A↑I,δ (y) can be thought of as a truth degree of the degree to which y is
shared by all objects from A is at least δ. We will show that this general approach
involving the idea of thresholds subsumes the proposals of [16] as special cases.
Moreover, unlike formulas (5) and (6), and (7) and (8), formulas for operators
↑I,δ and ↓I,δ are symmetric.

The set
B (X∗X

δ , Y ∗Y
ε , I) = {〈A, B〉 | A↑ = B, B↓ = A}

of all fixpoints of 〈↑, ↓〉 is called a fuzzy concept lattice of 〈X, Y, I〉; elements
〈A, B〉 ∈ B (X∗X

δ , Y ∗Y
ε , I) will be called formal concepts of 〈X, Y, I〉; A and B

are called the extent and intent of 〈A, B〉, respectively.

Remark 3. Since 1 → a = a for each a ∈ L, we have A↑I,1 = A↑I and B↓I,1 = B↓I

and, therefore, B (X∗X
1 , Y ∗Y

1 , I) = B (X∗X , Y ∗Y , I).

Basic Relationships to Earlier Approaches. The following theorem shows
that from a mathematical point of view, B (X∗X

δ , Y ∗Y

δ , I) is, in fact, a fuzzy
concept lattice with hedges (i.e. without thresholds) induced by a δ-shift δ → I
of I.

Theorem 1. For any δ ∈ L, ↑I,δ coincides with ↑δ→I , and ↓I,δ coincides with
↓δ→I . Therefore, B (X∗X

δ , Y ∗Y

δ , I) = B (X∗X , Y ∗Y , δ → I).

Proof. Using a → (b → c) = b → (a → c) and a → (
∧

j∈J bj) =
∧

j∈J (a → bj)
we get

A↑I,δ (y) = δ →
∧

x∈X(A∗X (x) → I(x, y)) =
=

∧
x∈X(δ → (A∗X (x) → I(x, y))) =

=
∧

x∈X(A∗X (x) → (δ → I(x, y))) = A↑δ→I (y).

One can proceed analogously to show that ↓I,δ coincides with ↓δ→I . Then the
equality B (X∗X

δ , Y ∗Y

δ , I) = B (X∗X , Y ∗Y , δ → I) follows immediately.

Remark 4. (1) Using [10], Theorem 1 yields that B (X∗X

δ , Y ∗Y

δ , I) is a complete
lattice; we show a main theorem for B (X∗X

δ , Y ∗Y

δ , I) below.
(2) In addition to A↑I,δ (y) = A↑δ→I we also have A↑I,δ (y) = (δ ⊗ A∗X )⇑I ;

similarly for B↓I,δ .

Remark 5. Note that shifted fuzzy contexts 〈X, Y, a → I〉 play an important role
in fast factorization of a fuzzy concept lattice B (X, Y, I) by a similarity given by
a parameter a, see [2, 7]. Briefly, B (X, Y, a → I) is isomorphic to a factor lattice
B (X, Y, I)/a≈ where a≈ is an a-cut of a fuzzy equivalence relation ≈ defined
on B (X, Y, I) as in [2]. An investigation of the role of a → I in factorization
of fuzzy concept lattices involving hedges is an important topic which will be a
subject of a forthcoming paper.
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The next theorem and Remark 6 show that the fuzzy concept lattices defined
in [16] are isomorphic, and in fact identical, to fuzzy concept lattices defined by
(9) and (10) with appropriate choices of ∗X and ∗Y .

Theorem 2. Let B (X�, Y�, I), B (X�, Y�, I), and B (X♦, Y♦, I) denote the con-
cept lattices defined in Section 2.3 using a parameter δ.

(1) B (X�, Y�, I) is isomorphic to B (X∗X

δ , Y ∗Y

δ , I), and due to Theorem 1 also
to B (X∗X , Y ∗Y , δ → I), where both ∗X and ∗Y are globalizations on L.

(2) B (X�, Y�, I) is isomorphic to B (X∗X

δ , Y ∗Y

δ , I), and due to Theorem 1 also to
B (X∗X , Y ∗Y , δ → I), where ∗X is globalization and ∗Y is the identity on L.

(3) B (X♦, Y♦, I) is isomorphic to B (X∗X

δ , Y ∗Y

δ , I), and due to Theorem 1 also
to B (X∗X , Y ∗Y , δ → I), where ∗X is the identity and ∗Y is globalization on L.

Proof. We prove only (2); the proofs for (1) and (3) are similar. First, we show
that for 〈C, D〉 ∈ B (X∗X

δ , Y ∗Y

δ , I) we have 〈1C, D〉 ∈ B (X�, Y�, I). Indeed, for
∗X being globalization we have 1C = C∗X and thus

(1C)� = δ →
∧

x∈1C I(x, y) = δ →
∧

x∈X((1C)(x) → I(x, y)) =

= δ →
∧

x∈X(C∗X (x) → I(x, y)) = C↑I,δ ,

and

D� = {x ∈ X |
∧

y∈Y (D(y) → I(x, y)) ≥ δ} =
= {x ∈ X | δ →

∧
y∈Y (D(y) → I(x, y)) = 1} =

= {x ∈ X | D↓I,δ (x) = 1} = 1(D↓I,δ ) = 1C.

Clearly, 〈C, D〉 �→ 〈1C, D〉 defines an injective mapping of B (X∗X

δ , Y ∗Y

δ , I) to
B (X�, Y�, I). This mapping is also surjective. Namely, for 〈A, B〉 ∈ B (X�, Y�, I)
we have 〈A↑I,δ↓I,δ , B〉 ∈ B (X∗X

δ , Y ∗Y

δ , I) and A = 1(A↑I,δ↓I,δ ). Indeed, since
A = A∗X , [8], ↑I,δ = ↑δ→I , and ↓I,δ = ↓δ→I give A↑I,δ↓I,δ↑I,δ = A↑I,δ = A� = B.
Furthermore, B↓I,δ = A↑I,δ↓I,δ . This shows 〈A↑I,δ↓I,δ , B〉 ∈ B (X∗X

δ , Y ∗Y

δ , I).
Observing

B� = δ(B↓I ) = 1(B↓δ→I ) = 1(B↓I,δ ) = 1(A↑I,δ↓I,δ )

finishes the proof.

Remark 6. (1) As one can see from the proof of Theorem 2, an isomorphism
exists such that the corresponding elements 〈A, B〉 ∈ B (X�, Y�, I) and 〈C, D〉 ∈
B (X∗X

δ , Y ∗Y

δ , I) are almost the same, namely, 〈A, B〉 = 〈1C, D〉. A similar fact
pertains to (1) and (3) of Theorem 2 as well.

(2) Alternatively, Theorem 2 can be proved using results from [11]. Consider
e.g. B (X�, Y�, I): It can be shown that B (X�, Y�, I) coincides with “one-sided
fuzzy concept lattice” of 〈X, Y, δ → I〉 (in the sense of [22]); therefore, by [11],
B (X�, Y�, I) is isomorphic to a fuzzy concept lattice with hedges where ∗X is
globalization and ∗Y is identity, i.e. to B (X∗X , Y, δ → I).

From (9) and (10) one easily obtains the following assertion.
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Corollary 1. B (X�, Y�, I) coincides with an ordinary concept lattice B
(
X, Y, δI

)

where δI = {〈x, y〉 | I(x, y) ≥ δ} is the δ-cut of I.

Remark 7. The foregoing results show that B (X�, Y�, I) and B (X∗X

δ , Y ∗Y

δ , I)
are isomorphic (with appropriate ∗X and ∗Y ). Moreover, B (X�, Y�, I) is almost
identical to B (X∗X

δ , Y ∗Y

δ , I), but they are not equal. Alternatively, one can pro-
ceed so as to define our operators by

A↑I,δ (y) =
(
δ →

∧
x∈X(A(x) → I(x, y))

)∗Y
, (11)

B↓I,ε(x) =
(
ε →

∧
y∈Y (B(y) → I(x, y))

)∗X . (12)

Then, we even have B (X�, Y�, I) = B (X∗X

δ , Y ∗Y

δ , I) (with the same choices of
∗X and ∗Y ). We still prefer (9) and (10) to (11) and (12) for reasons we omit
here due to lack of space.

Main Theorem of Fuzzy Concept Lattices Defined by Thresholds and
Hedges. Due to Theorem 1 and Theorem 2, we can obtain main theorems for
fuzzy concept lattices defined by thresholds. Omitting the proof due to lack of
space, we only give here a version for the general case of B (X∗X

δ , Y ∗Y

δ , I) for the
sake of illustration.

Theorem 3. (1) B (X∗X

δ , Y ∗Y

δ , I) is under ≤ a complete lattice where the infima
and suprema are given by

∧
j∈J 〈Aj , Bj〉 = 〈(

⋂
j∈J Aj)↑I,δ↓I,δ , (

⋃
j∈J B∗Y

j )↓I,δ↑I,δ 〉, (13)
∨

j∈J 〈Aj , Bj〉 = 〈(
⋃

j∈J A∗X

j )↑I,δ↓I,δ , (
⋂

j∈J Bj)↓I,δ↑I,δ 〉. (14)

(2) Moreover, an arbitrary complete lattice K = 〈K, ≤〉 is isomorphic to
B (X∗X

δ , Y ∗Y

δ , I) iff there are mappings γ : X×fix(∗X) → K, µ : Y ×fix(∗Y ) → K
such that

(i) γ(X × fix(∗X)) is
∨

-dense in K, µ(Y × fix(∗Y )) is
∧

-dense in K;
(ii) γ(x, a) ≤ µ(y, b) iff a ⊗ b ⊗ δ ≤ I(x, y),

with fix(∗) = {a | a∗ = a} denoting the set of all fixpoints of ∗.

3 Attribute Implications from Shifted Fuzzy Attributes

Let Y be a finite set of attributes (each y ∈ Y is called an attribute). A fuzzy at-
tribute implication (over Y ) is an expression A ⇒ B, where A, B ∈ LY are fuzzy
sets of attributes. In [6, 12, 13] we showed that (i) fuzzy attribute implications
can be interpreted in data tables with fuzzy attributes (i.e., in formal fuzzy con-
texts); (ii) truth (validity) of fuzzy attribute implications (FAIs) in data tables
with fuzzy attributes can be described as truth of implications in fuzzy concept
intents; (iii) FAIs which are true in a data table with fuzzy attributes can be
fully characterized by a so-called non-redundant basis of that table and the ba-
sis itself can be computed with polynomial time delay; (iv) semantic entailment
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from collections of fuzzy attribute implications can be characterized syntacti-
cally by an Armstrong-like set of deduction rules (two versions of completeness:
characterization of FAIs which are fully entailed and characterization of degrees
of entailment).

In this section we show that using the idea of thresholds one can generalize
the notion of a truth of an attribute implication to a notion of δ-truth, where δ
is a truth degree acting as a threshold degree. We show results answering basic
questions arising with the notion of a δ-truth.

For an L-set M ∈ LY of attributes and a truth degree δ ∈ L, define a degree
||A ⇒ B||δM ∈ L to which A ⇒ B is δ-true in M by

||A ⇒ B||δM = (δ → S(A, M))∗X → (δ → S(B, M)). (15)

Since S(B, M) can be interpreted as “a degree to which M has each attribute
from B”, δ → S(B, M) expresses a truth degree of proposition “a degree to which
M has each attribute from B is at least δ”. Thus, one can see that ||A ⇒ B||δM
is interpreted as a degree to which it is true that “if it is very true that M has
all attributes from A at least to degree δ, then M has all attributes from B at
least to degree δ”. Hence, δ acts as a threshold for antecedent and consequent
of A ⇒ B which influences the truth of A ⇒ B in M . The notion of truth
||· · ·||M being used in [6, 12, 13] is now but a particular case for δ = 1, i.e.
||A ⇒ B||M = ||A ⇒ B||1M . For δ = 0, which is the other borderline case,
||A ⇒ B||0M = 1 for each A, B, M ∈ LY .

Theorem 4. For each A, B, M ∈ LY and δ ∈ L,

||A ⇒ B||δM = ||A ⇒ B||1δ→M = ||δ⊗A ⇒ δ⊗B||1M = δ → ||δ⊗A ⇒ B||1M . (16)

Proof. Using a → (b → c) = b → (a → c), a →
∧

i bi =
∧

i(a → bi), and
1 → a = a, see [3], one can conclude δ → S(C, M) = S(C, δ → M) = 1 →
S(C, δ → M). Thus, ||A ⇒ B||δM = ||A ⇒ B||1δ→M . The second equality follows
by using a → (b → c) = (a ⊗ b) → c. The last one is also clear.

For technical reasons we introduce the following convention. For a set M ⊆ LY

(i.e. M is an ordinary set of L-sets) we define a degree ||A ⇒ B||δM ∈ L to which
A ⇒ B is δ-true in M by ||A ⇒ B||δM =

∧
M∈M ||A ⇒ B||δM . Obviously,

||A ⇒ B||δM =
∧

M∈M ||A ⇒ B||δM =
∧

M∈M ||A ⇒ B||1δ→M = ||A ⇒ B||1δ→M,

where δ → M = {δ → M | M ∈ M}. For 〈X, Y, I〉, let Ix ∈ LY (x ∈ X) be
an L-set of attributes such that, for each y ∈ Y , Ix(y) = I(x, y). Described
verbally, Ix is the L-set of all attributes of object x ∈ X in 〈X, Y, I〉. Now, a
degree ||A ⇒ B||δ〈X,Y,I〉 ∈ L to which A ⇒ B is δ-true in (each row of ) 〈X, Y, I〉
is defined by

||A ⇒ B||δ〈X,Y,I〉 = ||A ⇒ B||δM, where M = {Ix | x ∈ X}. (17)

Using previous observations, we get the following
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Corollary 2. Let 〈X, Y, I〉 be a data table with fuzzy attributes, δ ∈ L. Then

||A ⇒ B||δ〈X,Y,I〉 = ||A ⇒ B||1〈X,Y,δ→I〉. (18)

The following assertion generalizes a well-known characterization of a degree of
truth of an attribute implication. It also shows that the notion of a δ-truth is
well-connected to the formulas for ↑I,δ and ↓I,δ .

Theorem 5. Let 〈X, Y, I〉 be a data table with fuzzy attributes, δ ∈ L. Then

||A ⇒ B||δ〈X,Y,I〉 = S(B, A↑I,δ↓I,δ ).

Proof. Using [12], we have ||A ⇒ B||1〈X,Y,J〉 = S(B, A↑J↓J ) for any fuzzy relation
J between X and Y . Therefore, by Theorem 1 and Corollary 2,

||A ⇒ B||δ〈X,Y,I〉 = ||A ⇒ B||1〈X,Y,δ→I〉 = S(B, A↑δ→I↓δ→I ) = S(B, A↑I,δ↓I,δ ).

Using the concept of δ-truth, we can define appropriate notions of a model and
a semantic entailment from collections of FAIs. Let T be a set of FAIs, δ ∈ L.
M ∈ LY is called a δ-model of T if ||A ⇒ B||δM = 1 for each A ⇒ B ∈ T . The
set of all δ-models of T will be denoted by Modδ(T ), i.e.

Modδ(T ) = {M ∈ LY | for each A ⇒ B ∈ T : ||A ⇒ B||δM = 1}. (19)

In our terminology, models used in [6, 12, 13] are the 1-models. Using the notion
of a δ-model, we define a degree of semantic δ-entailment from T . A degree
||A ⇒ B||δT ∈ L to which A ⇒ B is semantically δ-entailed from T is defined by

||A ⇒ B||δT = ||A ⇒ B||δModδ(T ). (20)

Again, semantic 1-entailment coincides with the semantic entailment as it was
introduced in [6, 12, 13]. The following assertion shows relationship between var-
ious degrees of δ-entailment.

Theorem 6. Let A, B ∈ LY , δ ∈ L, T be a set of FAIs. Then

(i) Modδ(T ) = {M ∈ LY | δ → M ∈ Mod1(T )},
(ii) ||A ⇒ B||1T ≤ ||A ⇒ B||δT ≤ ||A ⇒ B||0T ,
(iii) ||A ⇒ B||1T =

∧
δ∈L ||A ⇒ B||δT .

Proof. (i): By definition and using (16), Modδ(T ) = {M ∈ LY | for each A ⇒
B ∈ T : ||A ⇒ B||δM = 1} = {M ∈ LY | for each A ⇒ B ∈ T : ||A ⇒ B||1δ→M =
1} = {M ∈ LY | δ → M ∈ Mod1(T )}.

(ii): Taking into account (i), we get ||A ⇒ B||1T =
∧

M∈Mod1(T ) ||A ⇒ B||1M ≤
∧

δ→M∈Mod1(T ) ||A ⇒ B||1δ→M =
∧

M∈Modδ(T ) ||A ⇒ B||δM = ||A ⇒ B||δT . The
rest is true because 0 → S(B, M) = 1 for all B, M ∈ LY .

(iii): The “≤”-part follows from (ii); the “≥”-part is trivial since 1 ∈ L.
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Remark 8. In some cases we even have

||A ⇒ B||1T = ||A ⇒ B||δT

for δ > 0. Inspecting the proof of Theorem 6, one can see that this is, for instance,
the case when each M ∈ LY is of the form M = δ → N for some N ∈ LY . This
condition is satisfied for a product structure on [0, 1], i.e. when a ⊗ b = a · b.
Then, M = δ → (δ ⊗ M) as one can verify.

The following assertion shows that if ∗X is a globalization, then the degrees of
semantic δ-entailment can be expressed as degrees of semantic 1-entailment.

Theorem 7. Let ∗X be globalization. For each set T of fuzzy attribute implica-
tions and δ ∈ L there is a set T ′ ⊇ T of fuzzy attribute implications such that,
for each A ⇒ B,

||A ⇒ B||δT = ||A ⇒ B||1T ′ . (21)

Proof. Take any T and δ ∈ L. Since ||A ⇒ B||δT =
∧

M∈Modδ(T ) ||A ⇒ B||δM =
∧

δ→M∈Mod1(T ) ||A ⇒ B||1δ→M , it suffices to find T ′ ⊇ T so that Mod1(T ′) =
Mod1(T )∩{δ → M | M ∈ LY }. From [6, 12, 13] we have that Mod1(T ) is a closure
system, i.e., an intersection of arbitrary 1-models of T is again a 1-model of T . In
addition,

⋂
i∈I(δ → Mi) = δ →

⋂
i∈I Mi is true for each {Mi ∈ Mod1(T ) | i ∈ I}

from which we get that Mδ = Mod1(T ) ∩ {δ → M | M ∈ LY } is closed under
arbitrary intersections. Thus, for each M ∈ LY let clδ(M) ∈ LY denote the
least fuzzy set of attributes (w.r.t. “⊆”) which belongs to Mδ. Moreover, put
T ′ = T ∪ {M ⇒ clδ(M) | M ∈ LY }. Clearly, Mod1(T ′) ⊆ Mδ because T ⊆ T ′,
and for each M ∈ Mod1(T ′) there is N ∈ LY such that M = δ → N (the
existence of N follows from the fact that M is a 1-model of {M ⇒ clδ(M) | M ∈
LY }, i.e., it belongs to {δ → M | M ∈ LY }). The “⊇”-part is true because
if M �∈ Mod1(T ′), then either M �∈ Mod1(T ) or there is N ∈ LY such that
||N ⇒ clδ(N)||1M �= 1 from which we further obtain N ⊆ M and clδ(N) �⊆ M
yielding M �∈ {δ → M | M ∈ LY }. In either case, assuming M �∈ Mod1(T ′),
we get M �∈ Mδ. Finally, ||A ⇒ B||δT =

∧
δ→M∈Mod1(T ) ||A ⇒ B||1δ→M =

∧
M∈Mod1(T ′) ||A ⇒ B||1M = ||A ⇒ B||1T ′ .

We now turn our attention to particular sets of FAIs which describe δ-truth of
attribute implications in a given data table via semantic entailment. Let 〈X, Y, I〉
be a data table with fuzzy attributes, δ ∈ L be a truth degree. A set T of FAIs is
called δ-complete in 〈X, Y, I〉 if, for each A ⇒ B, ||A ⇒ B||1T = ||A ⇒ B||δ〈X,Y,I〉.
If T is δ-complete and no proper subset of T is δ-complete, then T is called a
non-redundant δ-basis of 〈X, Y, I〉. The following assertion gives a criterion of
δ-completeness.

Theorem 8. Let 〈X, Y, I〉 be a data table with fuzzy attributes, δ ∈ L, ∗Y be
identity. Then T is δ-complete in 〈X, Y, I〉 iff Mod1(T ) = Int(X∗X

δ , Y ∗Y

δ , I).
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Proof. By definition, we get that T is δ-complete in 〈X, Y, I〉 iff, for each A ⇒
B, ||A ⇒ B||1T = ||A ⇒ B||δ〈X,Y,I〉, which is true iff ||A ⇒ B||1T = ||A ⇒
B||1〈X,Y,δ→I〉, i.e., iff T is 1-complete in 〈X, Y, δ → I〉. The latter is true, by re-
sults on 1-completeness [6, 12], if and only if Mod1(T ) = Int(X∗X , Y ∗Y , δ →
I). By Theorem 1, Int(X∗X , Y ∗Y , δ → I) = Int(X∗X

δ , Y ∗Y

δ , I), finishing the
proof.

size distance
small (s) large (l) far (f) near (n)

Mercury 1 0 0 1
Venus 0.75 0 0 1
Earth 0.75 0 0 0.75
Mars 1 0 0.5 0.75

Jupiter 0 1 0.75 0.5
Saturn 0 1 0.75 0.5
Uranus 0.25 0.5 1 0.25

Neptune 0.25 0.5 1 0
Pluto 1 0 1 0

Fig. 1. Data table with fuzzy attributes and fuzzy concept lattice

Remark 9. (1) Theorem 8 says that a set T of FAIs which is δ-complete in a
given data table with fuzzy attributes not only describes truth of all FAIs in
the table, but also fully determines the corresponding concept lattice (intents of
B(X∗X

δ , Y ∗Y

δ , I) are exactly the models of T ). More importantly, the claim was
proven due to existing results on FAIs and due to a reduction of the problem of
δ-completeness to the problem of 1-completeness.

(2) Previous results [6, 12] allow us to determine a non-redundant basis of a
data table with fuzzy attributes. The procedure is the following. Given 〈X, Y, I〉
and δ ∈ L, first determine 〈X, Y, δ → I〉, then find a non-redundant basis T of
〈X, Y, δ → I〉 (in the sense of [6, 12]) which is, in consequence, a non-redundant
δ-basis of 〈X, Y, I〉. Note that the well-known Guigues-Duquenne basis [17, 19]
is a particular case of the above-described basis for L = 2 and δ = 1.

4 Illustrative Example

Take a finite �Lukasiewicz chain L with L = {0, 0.25, 0.5, 0.75, 1} as a structure
of truth degrees. Consider an input data table 〈X, Y, I〉 depicted in Fig 1 (left)
which describes properties of planets of our solar system. The set X of ob-
ject consists of objects “Mercury”, “Venus”, . . . , set Y contains four attributes:
size of the planet (small / large), distance from the sun (far / near). Let ∗X be
globalization and ∗Y be identity. Fuzzy concept lattice B(X∗X , Y ∗Y , I) (i.e.,
B(X∗X

1 , Y ∗Y
1 , I)) is depicted in Fig.1 (right). A non-redundant (minimal) basis

(i.e., 1-basis) of 〈X, Y, I〉 consists of the following fuzzy attribute implications.
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{0.75/s, 0.75/l, f}⇒{l, n}
{0.75/s, 0.5/n}⇒{n}
{0.75/s}⇒{s}
{0.5/s, 0.75/n}⇒{s, n}
{l}⇒{0.75/n}
{0.5/l, 0.75/n}⇒{l}
{0.5/l}⇒{0.75/l, f}
{f, 0.5/n}⇒{0.75/l}
{0.5/f}⇒{0.75/f}
{n}⇒{s}
{}⇒{0.25/s, 0.25/l, 0.25/f, 0.25/n}

{s, 0.75/l}⇒{n}
{s, 0.75/n}⇒{n}
{0.75/s, n}⇒{s}
{0.75/l}⇒{l, f}
{0.75/f}⇒{f}
{}⇒{0.5/s, 0.5/l, 0.5/f, 0.5/n}

{l}⇒{f}
{}⇒{0.75/s, 0.75/l, 0.75/f, 0.75/n}

Fig. 2. Fuzzy concept lattices and corresponding non-redundant bases

{s, 0.5/l, f}⇒{l, n} {0.75/l}⇒{l, 0.5/n}
{s, 0.5/f, n}⇒{l, f} {0.25/l, 0.5/n}⇒{l}
{0.75/s, 0.5/f}⇒{s} {0.25/l}⇒{0.5/l, 0.75/f}
{0.75/s, 0.25/n}⇒{0.75/n} {f}⇒{0.25/s}
{0.5/s}⇒{0.75/s} {0.75/f, 0.25/n}⇒{0.5/l}
{0.25/s, 0.75/f}⇒{f} {0.25/f}⇒{0.5/f}
{0.25/s, 0.5/n}⇒{0.75/s, 0.75/n} {0.75/n}⇒{0.75/s}

Models of the basis are exactly the intents of B(X∗X , Y ∗Y , I), see [6, 12]. We
now show how the fuzzy concept lattice and its minimal basis change when
we consider thresholds δ ∈ L. Recall that if δ = 1, then B(X∗X

1 , Y ∗Y

1 , I) =
B(X∗X , Y ∗Y , I), and a 1-basis of 〈X, Y, I〉 is the previous set of FAIs. For δ = 0
the concept lattice is trivial (one-element) and the basis consists of a single fuzzy
attribute implication {} ⇒ {s, l, f, n}. Fig. 2 (left) depicts fuzzy concept lattice
B(X∗X

0.75, Y
∗Y
0.75, I) and its non-redundant basis (below the lattice); Fig. 2 (middle)

depicts fuzzy concept lattice B(X∗X
0.5 , Y ∗Y

0.5 , I) and the corresponding basis. Fi-
nally, Fig. 2 (right) depicts B(X∗X

0.25, Y
∗Y
0.25, I) and its basis.

5 Conclusions

We showed that the extent- and intent-forming operators from [16], based on
the idea of thresholds, form, in fact, a particular case of Galois connections with
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hedges. Furthermore, we showed that the formulas for Galois connections with
hedges can be extended using the idea of thresholds and that this extension still
reduces to the original formulas. This enables us to reduce the problems of Galois
connections with hedges and thresholds and their concept lattices to problems
of Galois connections with hedges and their concept lattices. Nevertheless, the
concept of Galois connections with hedges and thresholds is intuitively appealing,
the thresholds being parameters which influence the size of the resulting concept
lattices. In addition to that, we introduced thresholds to the definition of truth
of fuzzy attribute implication and proved some results concerning reduction to
the case without thresholds and some further results.

Further research will deal with the following problems:

– the role of shifted attributes in FCA of data with fuzzy attributes,
– analysis of the relationship between δ1 and δ2, and the corresponding struc-

tures B
(
X∗X

δ1
, Y ∗Y

δ1
, I

)
and B

(
X∗X

δ2
, Y ∗Y

δ2
, I

)
,

– further investigation of thresholds in fuzzy attribute implications.
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7. Bělohlávek R., Dvořák J., Outrata J.: Direct factorization in formal concept anal-
ysis by factorization of input data. Proc. 5th Int. Conf. on Recent Advances in Soft
Computing, RASC 2004. Nottingham, United Kingdom, 16–18 December, 2004,
pp. 578–583.
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