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Abstract. We present a novel approach to compute formal concepts ofdlocontext. In terms
of operations with Boolean matrices, the presented algoritcomputes all maximal rectangles of
the input Boolean matrix which are full afs. The algorithm combines basic ideas of previous
approaches with our recent observations on the influencétrfide permutations and attribute
sorting on the number of formal concepts which are computedipfe times. As a result, we
present algorithm which computes formal concepts by ssaeegontext reduction and attribute
sorting. We prove its soundness, discuss its complexityefficdency, and show that it outperforms
other algorithms from the CbO family in terms of substafhtildwer numbers of formal concepts
which are computed multiple times.

1. Introduction and Problem Setting

Formal concept analysis (FCA) is a method of relational dataysis proposed by R. Wille [27] in early
80’s. Since its inception, there has been an extensivedtieal research which has lead to many order-
theoretical results, see [7] for a survey. Another, mayhealy important fact is that the results have
been directly applied to various fields of data analysisidiclg analysis in software engineering [25, 26],
web information retrieval [11], and market-basket analy2B]. Examples of FCA applications can be
found in [4, 7].
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In its basic setting, FCA deals with object-attribute rielaél data which can be seen as a data table
with rows corresponding to objects, columns correspondingttributes (features), and table entries
being1 or 0, indicating whether objects have or do not have correspgndttributes. Formally, such
data tables can be seen as binary relations between a sgeofsoind a set of attributes. The aim of
FCA is to extract from such input data useful information @whimteresting object-attribute biclusters
and attribute dependencies which are present in data. Tthatswf FCA are used either directly or for
preprocessing purposes. In the first case, extracted edijeitiute clusters (so-called formal concepts)
are ordered by a subconcept-superconcept hierarchy andecpresented to users by a line diagram
of clusters (diagram of so-called concept lattice). Thesusan then navigate though the hierarchy to
find clusters, identified by sets of objects and attributes déine covered by the clusters, which represent
interesting and/or useful information for them. For ing@nin an object-attribute database of cars and
their features, users can find clusters like “affordable saf® cars”, “four-wheel drive SUVs”, etc.,
which they may find interesting. Note that the interpretaid a cluster as a concept having its extent
(objects that fall under the concept) and its intent (aitdb that fall under the concept) which is used in
FCA is inspired by a traditional understanding of concepicivlgoes back to Port-Royal logic [5, 18].

If FCA is used for preprocessing, the extracted clustensm& concepts) are not used by users di-
rectly. Instead, they are used as input for other data mimiethods. For instance, the seminal paper [24]
showed that the formal concepts can be used to find non-radtia@sociation rules, cf. also [29]. Re-
cently, it has been shown in [3] that formal concepts can kd tsfind optimal factorization of Boolean
matrices. In fact, it can be shown that they correspond tongbtsolutions of the discrete basis problem
discussed by Miettinen et al. [21].

In either case, the basic computational problem of FCA itapute, given an input formal context
(an object-attribute data table), the set of all formal epts (the object-attribute clusters present in the
input data). In the past, there have been proposed varigasthims for solving this task, see [17] for a
survey and comparison. Among the best-known algorithm€haf@ [14, 15, 16] proposed by Kuznetsov,
Ganter’s NextClosure [6, 7], and Lindig’'s UpperNeighbo®]&lgorithms. There is an important family
of algorithms which includes CbO, NextClosure, the aldwnitproposed by Norris [22], and other algo-
rithms such as PCbO [12], FCbO [13, 23], and InClose [2]. Wtlsis family a CbO familybecause all
algorithms in the family can be seen as modifications or refargs of CbO. For instance, NextClosure
can be seen an iterative version of CbO, PChO is a parallieintasf CbO, FCbO is a refinement of CbO
which uses a new canonicity test, etc. In a broader sens€hfdefamily of algorithms can be seen as
an example of a family of algorithms for listing combina#drstructures [8].

A common issue that all algorithms for FCA have to care ab®td prevent processing (e.g., storing
or listing) the same formal concept multiple times. Thew saveral approaches to cope with the prob-
lem. The CbO family algorithms use canonicity tests whiah generally very cheap to perform. The
basic idea is the following. Formal concepts are supposde tromputed in a predefined order. If the
order is not preserved in a certain branch of computatien &newly computed formal concept does not
pass the canonicity test during the computation), the lbréno longer considered. As a consequence,
the canonicity test ensures that even if a formal conceptrigpeited several times, it is processed (e.g.,
stored or listed) exactly once.

Although conceptually similar, algorithms from the CbO frdiffer in their efficiency. One of
the most important factors is just the efficiency of the ulyileg canonicity tests. For instance, FCbO
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uses a canonicity test which is more efficient than that ofotfiginal CbO. In practice, the numbers of
formal concepts which are computed multiple times by FCb&issiderably smaller than the numbers
corresponding to CbO [13, 23]. Another efficiency issue Whgrelated to canonicity tests is the order
in which attributes are processed by algorithms of the Ch@ilja In general, an important feature
of algorithms for FCA is whether their performance dependsha order of objects and attributes in
the input formal context. From this point of view, we shalll@n algorithm permutation resistant
whenever all isomorphic copies (in the usual sense) of hetiformal context require the same number
of elementary computation steps in order to compute all eptsc For our purposes, an elementary
computation step shall be represented by computation aiglesformal concept. One can easily see
that, e.g., Lindig’s UpperNeighbor algorithm [19] is reaist. In other words, if we rearrange rows and
columns in the input data table, the algorithm uses the eseane number of steps to compute all formal
concepts. On the other hand, algorithms from the CbO faméynat resistant [13] and thus considering
different orders of attributes can reduce the number of eptscthat are computed multiple times, thus
improving the efficiency.

The present paper is partly motivated by our observatiams {1 3] where we have investigated the
impact of using different orders of attributes for algamith from the CbO family. One of the results
presented in [13] says that if attributes of formal conte®t sorted in the ascending order according to
their supports, i.e., the numbers of objects having théatts, then the canonicity test of both CbO and
FCbO always succeeds for all attribute concepts (concegisrgted by a single attribute) provided that
all attributes are distinct (i.e., all columns of the inpataltable are pairwise distinct). Furthermore, our
empirical experiments have shown an interesting tendematywhile processing formal contexts with
attributes sorted in the aforementioned order, canonieiis tend to fail less frequently than in the case
of contexts containing inversions (with respect to theafoentioned order). In addition, with increasing
number of inversions in a data table, the average numbemopuated closures grows. This seems to be
a general tendency which has been experimentally obsenjaa].

In the present paper, we elaborate on the ideas of attrilouteg. Motivated by the results of at-
tribute sorting presented in [13], we introduce a methodftribute sorting and context reduction which
is performed after obtaining a new formal concept. Unlike #ipproach in [13], where attribute sort-
ing was just a means of data preprocessing and was used foirgat data exactly once (before the
computation which is then done by standard CbO or FCbO), Weeuattribute sorting during the com-
putation several times which results in a conceptually ngardhm. The idea of dynamic reordering of
attributes appeared in algorithm CHARM [28] for computingsed itemsets. In the paper, we describe
the algorithm, prove its soundness, and investigate itsptxity and further efficiency issues related
to efficiency of its canonicity test. As we shall see in furtBections, in terms of the numbers of con-
cepts computed multiple times, the proposed algorithmeytdpms CbO by an order of magnitude. The
improvement is apparent especially in the case of largedatal sets [9].

The paper is organized as follows. Section 2 contains briefipinaries from FCA. Section 3
introduces operations with formal contexts which are usetéscribe the algorithm. Section 4 introduces
the algorithm. Section 5 contains a detailed running exaropthe algorithm. Section 6 contains proof
of soundness of the algorithm. Finally, Section 7 is devatedomplexity and efficiency issues of the
algorithm and contains performance comparison with otlgarghm from the CbO family.
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2. Preliminaries from FCA

In this section we recall basic notions of FCA. More detads de found in monographs [7] and [4].
Let X andY denote finite sets of objects and attributes, respectiveliprmal context is a triplek =
(X,Y,I) where] C X x Y, ie. Iis a binary relation betweeX andY. The fact(x,y) € I is
interpreted so that “object has attribute,”. Note thatK obviously corresponds to a two-dimensional
data table with rows corresponding to objects frdmcolumns corresponding to attributes framand
table entries being and0 indicating whetherz,y) € I or (z,y) ¢ I. Thus, formal contexts can be
seen as Boolean matrices.

GivenK = (X,Y,I), we introduce a pair of concept-forming operators 7]: 2¥ — 2¥ and
he: 2V s 92X defined, foreactt € X andB C Y, by A< = {y € Y |for eachz € A: (x,y) € I} and
B¥ = {x ¢ X |foreachy € B: (z,y) € I}, respectively. If there is no danger of confusion, we omit
K and write just’ and* instead of'« and+*, respectively. The cardinality dfy}* is called the support
of y € Y. By aformal concept ifk with extent4 and intent3 we mean any paif4, B) € 2 x 2" such
that AT« = B and B'¢ = A. Thus, formal concepts are fixed points of the concept-fognuperators.
Intuitively, each formal conceptA, B) represents a bicluster Id which consists of objectd that fall
under the concept and attribut&sthat fall under the concept. SincE* = B andB'x = A, Ais a
set of objects having all attributes froBand B is a set of attributes shared by all objects framLet
us stress that formal concepts can be seen as maximal Baalbamatrices in the following sense: any
(A, B) € 2% x 2V such thatd x B C I can be called a Boolean submatrixIf(which is full of 1s).
Moreover, a Boolean submatri¥i, B) of K is a maximal one if, for each Boolean submatfi¥’, B’)
of K such thatd x B C A’ x B’, we haveA = A’ and B = B’. We have thatA, B) € 2X x 2¥ is
a maximal Boolean submatrix & (which is full of 1s) iff A = B andB¥* = A. Hence, maximal
Boolean submatrices full dfs are exactly the formal concepts.

The set of all formal concepts & = (X, Y, I) will be denoted by3(X, Y, I). Recall that3(X,Y, I)
endowed by a concept orderirg forms a complete lattice, called a concept lattice, whosektre is
described by the Basic Theorem of FCA [7, 27].

3. Clarification and Attribute Sorting

In this section, we introduce basic operations with costéxat are used to describe the proposed algo-
rithm for computing formal concepts. One of the distinginghfeatures of the algorithm is that during
the computation, it transforms an initial formal contexoimther contexts by taking subsets of objects
and by grouping several attributes together. In additioth&b, groups of attributes are sorted according
to their support and equipped with an additional numerieaj fhdicating whether a group of attributes
is allowed to be present in intents of formal concepts coeybirt next stages (a precise meaning of the
flag will be described later). These operations on conteleg @ crucial role and will be described in
this section. We begin with particular representation ofifal contexts.

3.1. Input Formal Contexts and R-contexts

Here we describe the basic form of formal concepts which aesl Wuring the computation. As in
case of any algorithm for computing formal concepts, thaiirfpr our algorithm is a formal context
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K = (X,Y,I). In order to keep information about groups of attributesuse particular contexts, called
R-contexts, to represent input data. A formal definitiondai.

Definition 3.1. Given a formal contexK = (X, Y, I), atripleK* = (X* Y* I*) is called anR-context
(derived fromK) if the following conditions are satisfied:

(i) X*CX;

(i) Y* C Ny x2Y such that for anyny, By) € Y and(ns, By) € Y* we have either that (a); = ns
andB; = By # () or (b) By # 0, By # (), andB; N By = (;

(iii) forany z € X* and(n, B) € Y*: (x,y1) € T iff (z,y2) € I holds true for ally;, y» € B;
(iv) I = {{z,(n,B)) € X! x Y| (2,9) € I forally € B}.

In addition, K¥ = (X* Y* I*) is called aninitial R-context(derived fromK) if X* = X, v! =
{(0,{y}) ly € Y}, andI* = {{z, (0, {y})) € X* x Y*|(z,y) € I}. u

We can immediately observe basic propertieg:afontexts:

Remark 3.2. (a) EachR-context is a formal context. Notice that due to (i}, (n, B)) € I*iff z €
B« for z € X* and(n, B) € Y*. Moreover, taking into account (iii) and (iv), it follows ahfor any
(z,(n,B)) € X* x Y*, (2, (n, B)) € I*iff there isy € B such thatz,y) € I in which casg(z,y) € T

is true for ally € B because of (iii). Note that each attribiie, B) € Y* has two parts: a numerical flag
n (explained later) and a subgetC Y of original attributes. Using (ii), we get that # (). In addition to
that, distinct attributes frofi'* have associated pairwise disjoint nonempty subsets dhatigttributes.

(b) Note that attributes iR-contextK® = (X* Y*, I*) have natural interpretation as sets of attributes
from the original context which are indistinguishablekiprovided we restrict ourselves only to objects
from X*. Indeed, this is a basic consequence of Definition 3.1 (iii).

(c) An initial R-context derived fromK is an R-context. Indeed, (i) and (ii) are obvious since
attributes of an initialR-context are all of the forng0, {y}). It is immediate that (iii) and (iv) of Defini-
tion 3.1 are satisfied as well. Obviously, an initRicontextK* derived fromK is isomorphic tdK in
the usual sense. In other word¥ is exactly the same &S up to the names of attributes.

From now on, we describe further operations with contextieims of R-contexts instead of the
original input contexts. By this we do not impose any restitsince an initialR-context derived from
K has the same concepts up to different names of attributefkemark 3.2 (c).

Example 3.3. As an example, we consider a formal cont&with objectsX = {a,..., f} and at-
tributesY = {0,...,7}. The context (left) and ai-context derived fronK (right) are depicted in
Table 1. Notice that the original attributésand4 are distinguishable ifK by objectc. On the other
hand, they are indistinguisbahle b, d, ¢, f}, hence the attributé, {1,4}) in Y* is correct and satis-
fies the requirement given by Definition 3.1 (jii). Also, nakat all attributes ifk* except for(1, {2})
are given zero flags.

Remark 3.4. Note thatK? which results fromiK is fully given by the setsX* andY* of objects and
attributes, respectively. The binary relatiBhcan be determined from the originglsee Remark 3.2 (a).
Thus, a concise computer representatiofXbtan consist of a list of objects and attributes, respegtivel
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Table 1. Formal conteXt (left) and anRk-context derived fronK (right)
(k[oli[2]3[4]5][6]7]

a x | x x K[ 0, {1,411, {21)[ (0, {31) ] (0, {6}) |0, {7})]
b || x X | X X X b X X X

c d X X X

d X X e

e f X X X

f X | X X

omitting the expensive operation of copying a part of theadapresentation af which can be kept in
computer memory only once.

We conclude this subsection by showing that the conceptifay operators induced big-contexts
have a close relationship to concept-forming operatorsrigir@al contexts. In order to keep concise
notation, we first introduce the following abbreviation.rgmy D C Y*, we define

D] =U{B CY|[(n,B) e D}. (1)

Using this notation, we have:

Lemma 3.5. Let K = (X* Y* I%) be anR-context derived fromiK. Then, for anyC' C X* and
D CYY,

[CTei | = CTen |YE], (2)
XN DY = D, (3)

Proof:
Both equalities can be proved using basic propertie®-cbntexts.

“(2)": Let y € |Cxt|. Therefore, there ién, B) € C'«t C Y* such thaty € B. Hencey € |Y*].
Moreover, (n, B) € C'«t yields that for eaclr € C, (z, (n, B)) € I*. Due to Definition 3.1 (iv), the
latter means that for eache B andz € C, we have(x,y) € I. Therefore,B C C'% je.,y € Cx,
showing |CT«t | C CT= N [Y*]. Conversely, takgy € CTx N |Y*]. Then, for each: € C, we have
that (z,y) € I. Sincey € |Y*|, there is(n, B) € Y* such thaty € B. SinceC C X¥, using
Definition 3.1 (iii) and the previous fact, we get that for kace B andx € C, (x,y) € I. Thus, for
eachz € C, (z, (n, B)) € I', meaning(n, B) € C'x* and thugy € B C |Cxt |.

“(3)": Considerz € X*n |D|¥*. Therefore, for eacly € | D], (z,y) € I. In particular, for any
B C | D] such thatn, B) € D, we have(r,y) € I forally € B, i.e.,(z, (n, B)) € I* sincex € X*.
Moreover,(n, B) € D has been taken arbitrarily, which means that Dwt Conversely, let: € Dwt
By definition, we havex, (n, B)) € I* for all (n, B) € D. Therefore,(z,y) € I for all y € B such
that (n, B) € D, meaning thatz,y) € I is true for ally € |D|. Thereforex € | D]%<. The fact that
x € X' is trivial. O
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3.2. Clarification

Each R-context can be transformed into a néxcontext with possibly smaller sets of attributes by a
process of clarification. Recall from [7] that a formal cott& = (X,Y, ) is called clarified if for
anyy,ys € Y it follows that {y; }* = {y»}+ impliesy; = y» and dually for any couple of objects. In
other words, a clarified context in sense of [7] is a formaltertwhere all columns in the corresponding
object-attribute data table are distinct and dually forgovt is a well known fact that taking a clarified
formal context (with duplicate rows and columns removedjéad of the original one we get a possibly
smaller context whose concept lattice is isomorphic to tireept lattice of the original context.

In this section, we focus on a particular clarification/®fcontexts which applies only to attributes
of R-contexts. In addition, the procedure of clarification wiedduce here produces dtrcontext as a
result, i.e., we cope with particular form of attributes ahhconsist of a flag and a set of attributes of the
original context, see Definition 3.1. The basic idea is thmesas in [7], we produce a neig-context by
putting together identical columns of the correspondinig dable.

For any R-contextK* = (X* Y* I*) which is derived fromK, we can consider a binary relation
=x: onY* such thaty; = o iff {y1}'xt = {yo}¥xt. Hence,y; =x: v if columns of the data table
corresponding t&* given by attributeg; andy- are the same. Obviouslsy: is an equivalence relation
and thus we may consider the corresponding quotierit &t ;, denoting the equivalence class=f:
containingy € Y by [?/]EKu' Under this notation, we introduce the following notion:

Definition 3.6. For anyR-contextK? = (X* Y I*), we definex®, Y, I° as follows:

(i) xt=xt
(i) Yo = {(3{neNo|(n,B) € lyl=.}. [vl=,.]) lv € Y?},
(iiiy 1° = {(z,(n, B)) € X® x Y| there isn’ < n andB’ C B such thatz, (n’, B')) € I*}.

Moreover, Kt = (XC yC 1T} is called aclarified R-context(which results fronk?). |

Remark 3.7. Examining (i) of Definition 3.6, the seitC of attributes contains pairs:, B), wheren is

a numerical flag which results by taking a sum of flags of afilaites in a single equivalence class of
=k:. Analogously,B is a union of sets of original attributes which can be foundtinbutes from the
same equivalence class. While the idea behind taking umbssts of attributes is clear since attributes
indistinguishable unde&; are grouped together, the intuitive meaning of taking a séiffags may
not be clear at this point. The informal explanation is thikofing: in (n, B) € Y*, the numbem
says that “exactlyr of the original attributes fronB are not permitted to be used (at certain level of
computation)”. Thus, if we group attributes together, thenbers of attributes which are not permitted
are added since the sets of attributes are disjoint. A fojuséfication will follow in Section 4.

The following assertion shows basic properties of clarifitdontexts.

Lemma 3.8. Each clarifiedR-contextK’ is a well-definedR-context. Moreover, foikC we have that
= is identity. As a consequencgk®)t = K.
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Proof:

It suffices to check requirements (ii)—(iv) of Definition 3.1t is immediate that (ii) is satisfied since
Y* /=y consists of pairwise disjoint and nonempty classes whidimeattributes ikC. Furthermore,
(iii) is satisfied because for anye Xt = X!, (n, B) € Y, andy,, v, € B, there arein;, B;) € Y*
and(ny, By) € Y* such thaty, € By, y» € By, and(ny, B1) =g (n2, By). Therefore(z,,) € I iff
(z,(n1, B1)) € IYiff (x, (ng, By)) € ITiff (x,y0) € I, i.e. (iii) is satisfied byKC. In order to show (iv),
observe that by Definition 3.6, (n, B)) € IC iff there isn’ < n andB’ C B such that(n’, B') € Y*
and(z, (n’, B')) € I'. Taking into account;, (z, (n, BY) € IC iff for any (n’, B') € Y* such that
n' <nandB’' C B, we have(z, (n’, B')) € I*. Using Definition 3.1 (iv) which holds foK?, the latter
is true iff for any (n’, B') € Y* such thatr’ < n andB’ C B, we have(z,y) € I forally € B, i.e.,
(x,y) € I forall y € B becauses is a union of all suchB’s, proving (iv) of Definition 3.1 folkC. The
remaining claims follow easily. O

Table 2. Clarifiedr-contextK® (left) andKC with sorted attributes (right).

(K[, {1, ap[a. 2. 7h o, 81h[©0.{6p]  [KE[[(0, {6H)](0, {1, 4 [(0, {31)](1.{2,7})]
b X X b X X

d d
e e
f f

Example 3.9. ConsiderK and K* from Table 1. Then, the clarifie®-context which results froni®

is depicted in Table 2. Notice that only original attributBat have been put together gte {2}) and
(0,{7}). Since the flags are added, the flag of the resulting attridute, 7}) is equal tol. Flags of the
other attributes remain zero.

Remark 3.10. Notice that in our approach, we do not consider clarificatibrobjects, i.e. KC may
contain several objects having the same attributes. @atidin of objects is not used in the subsequent
algorithm because in our approach it would not reduce thebeumof concepts computed multiple times
and is therefore omitted.

3.3. Attribute Sorting

The algorithm described in Section 4 relies on attributdirsgr In particular, for eactR-contextK? =
(X* Y*, I%), we consider a partial order? on Y* such that for any;,y» € Y*, 31 <F y, implies
[{y1 1t | < [{y2}*=¢|. In general <! is not a linear order (not even in the case of clariffedontexts)
but it can be extended to a linear order by a well-known procedf topological sorting.

In next sections, we do not usé directly. Instead, we assume that we have a bijective maptwhi
assigns to each attribute frol¥ its numerical index which represents a position in an omidigt of
attributes which are sorted according to (a linear extensfd <*. In a more detail, for anyz-context
K* = (X* Y% I*) we consider a bijective map: Y* — {0, ..., |Y#|—1} such that, for any;, y» € Y?,

if f(y1) < f(y2), then|{y Pt | < [{ya}res). (4)
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The inversef—! of f is a map which assigns to each indgx {0,...,|Y*| — 1} the corresponding
attribute f~1(j) € Y*.

Example 3.11. Any R-context can be depicted with attributes sorted accoraing That is, if f (y1) <
f(y2), theny; is depicted beforey,. Table 2 (right) shows the results if we apply this idea to fie
contextK® from Table 2 (left). Note that in this particular case, thare two ways to defing since
attributes(0, {1,4}) and (0, {3}) have the same support. In such situations, we always conaide
arbitrary (but fixed)f for the sameak-context.

Remark 3.12. In [13], we have investigated the influence of attribute isgrfor the CbO family of
algorithms. From this point of view, we have considered t@e ordering of attributes according to
their support. An important distinguishing feature of thregent approach is that we do not consider
single <? (i.e., a singlef) during the computation. Instead, during the computatiea,successively
reduce the initialR-context and after each reduction, we determine iemhich applies to the reduced
R-context.

3.4. Context Reduction

We now describe a particular reduction operationfboontexts which utilizes operations dticontexts
defined in previous sections. The algorithm described iti@ed uses this operation directly to reduce
the problem of computing formal concepts of Afcontext to the problem of computing formal concepts
of several smalleRR-contexts. From this point of view, the proposed algorittotofvs the usuadivide
et imperascheme of decomposing an instance of a problem into sewmstahices of the same problem of
smaller sizes which in turn leads to a concise implementaifdhe algorithm by a recursive procedure.
The input for reduction is a clarifie-contextk* = (X* Y* I*) and a formal concefC, D) in K*
whose intent is nonempty, i.& # . ForK¥, we assume that we are given a bijective map satisfying (4)
which determines the order of attributesih. SinceD is nonempty, we can denote hyin(D) the least
attribute fromD with respect to the order given b i.e., min(D) € D such thatf (min(D)) < f(y)
for all y € D. Using this notation, we define the following notion:

Definition 3.13. For anyR-contextK? = (X* Y* If), C C X*, () # D C Y* such thaC'«t = D and
D't = C, we defineX®, Y%, and 1™ as follows:
(i) X% =c:
(i) Y? = {Attr(y) |y € Y¥andy ¢ D}, whereAttr(y) € Ny x 2V is defined by
B|,B), ifn=0andf({(n,B)) < f(min(D)),
Attr((n, B)) = (|B|, B) f((n, B)) < f(min(D)) 5)
(n,B),  otherwise
for any (n, B) € Y*;
(i) 1™ = {(z,(n,B)) € X™ x Y?| there isn’ < n such that(z, (n’, B)) € I*}. u

Remark 3.14. One can easily see th&f® = (X Y™ ') as defined in Definition 3.13 is d@-context
with objects taken frond, attributes being derived from attributes}i which are not present if?. Note
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that for eachin, B) € Y* which is not inD, Y™ contains an attributén’, B) € Y™, wheren’ is a new
flag. The value of the flag is either the samg {{n, B)) is greater or equal t¢(min(D)) or the flag
is equal to the size aB. In other words, if(n, B) is behindmin(D) in terms of the order of attributes,
the flag is not updated. The most important part of the flag tgpidathat an attributé0, B) € Y* will
be given a nonzero flag i™ if it is not in D and if it stays beforenin(D) in terms of the order of
attributes.

In general K® = (X% Y™, 1™) can contain two or more indistinguishable attributes (golamns
in the corresponding data table), i. &% may not be clarified in sense of Definition 3.6. The algorithm
described in the next section relies on reduction and datifin of R-contexts, we therefore introduce
the following notation:

Definition 3.15. If K™ results fromK* usingC and D in sense of Definition 3.13 and L is a clarifi-
cation ofK® in sense of Definition 3.6, thekC will be denoted by Rbucg(K*, C, D). |

Table 3. Context from Definition 3.13 (left), result oERUCE (middle), and its concise representation (right).

&3 en[o. B[] [Ko.enleeen)] K667
d X X d X d X

e e e

Example 3.16. ConsiderR-context from Table 2 (right). Fof' = {d,e}, andD = {(0,{1,4})}, the
R-contextK™ specified in Definition 3.13 is depicted in Table 3 (left). Metthat during the reduc-
tion, attribute(1, {6}) was given a nonzero flag since its position according twas before that of
attribute (0, {1,4}) in the original R-context. Table 3 (middle) represents a clarified versiokBfwith
attributes sorted according to their supports. Hence, tidellmtable represents the result oERJCE.
Table 3 (right) is a concise representation of the s@ymntext in which columns corresponding to at-
tributes with nonzero flags are highlighted as gray (therijgsans of attributes then contain just sets of
original attributes, the numerical flags are omitted).

4. Algorithm

In this section, we describe the proposed algorithm for adging formal concepts. The main part
of the algorithm is a recursive procedure@@rPUTE from Algorithm 1. The procedure accepts as its
argument a clarified?-context and during the computation it calls an auxiliarggadure COSURE
from Algorithm 2.

When invoked withK*, procedure ©MPUTE proceeds as follows. First, it stores a tuple which
consists of the set of objecfs® and NT(K*,Y"), where

INT(K®,Y) =Y\ [YF]. (6)

Recall that|- - -| is defined by (1). Thus,NT(K®,Y) = Y \ |U{B C Y |(n,B) € Y*}. Then, the
procedure goes over all attributes¥it with zero flags (see lines 2 and 3 of Algorithm 1). For each such



P. Krajca et al. / Computing Formal Concepts by AttributetBay 405

Algorithm 1: Procedure ©MPUTE(K?)

1 store (XF, INT(K, Y));

2 for (n,B) € Y¥do

3 if n =0 then

4 set(C, D) to CLOSURE(K?, (n, B));
5 if > {n €Ngy|(n,B) € D} =0then
6 | CompUTE(REDUCE(KF, C, D));
7 end

8 end

9 end

10 return

Algorithm 2: Procedure CosURE(K?, (n, B))
1 C={ze X! (x,(n,B)) e I);

2 D={yeY*|f((n,B)) < f(y)}:
3 forz e Cdo
4 for y € D do

5 if (x,y) ¢ I* then

6 | removey from D;
7 end

8 end

9 end

10 return (C, D)

attribute (n, B), the procedure invokesL©SURE and the result of invocation is stored (&, D). An
easy inspection of the pseudocode in Algorithm 2 shows eatgsult of calling COSURE(K!, (n, B))

is a formal concept ifk? generated by attributg:, B), i.e.,C' = {(n, B)}*«* andD = C'x:. Notice that
Algorithm 2 utilizes attribute sorting together with thefahatK* is clarified. In that case, all attributes
which belong toD must have their indices strictly greater than or equaf (0, B)). This observation
has already been made in [13].

Next step of Algorithm 1 is a canonicity test which succedtsll flags in D (computed in the
previous step) are zero, see line 5. In the case of succesgpCre invokes itself with reduced (and
clarified) formal context which results frofid?, see line 6. Otherwise, the algorithm continues with
another attribute. When all attributes are processedntieeation of @MPUTE for K is left.

For input formal contexK = (X, Y, I), the first invocation of ©MPUTE can be described by the
following consecutive steps:

1. take an initialR-contextK® = (X* Y* I*) derived fromK;
2. determine a clarified-contextK® = (X v IC) which results fromk?;
3. if |{(n, B)}*<¢| < |XC| for all (n, B) € YT then call ®mPUTE(KE).



406 P. Krajca et al. / Computing Formal Concepts by Attribute tiay

4. if there is(n, B) € YT such that{(n, B)}*«¢| = | XC|, then call @MPUTE(K*), where
K* = (X*, Y* I*) with X* = X0 y* = Y0\ {(n, B)}, andI* = IC N (X* x Y*).

In other words K is transformed into arR-context and clarified. If the resulting-context contains
an attribute shared by all objects (notice that since itasifiéd, such an attribute is at most one), it is
removed from theR-context. Then, ©OMPUTE s invoked with suchR-context as an input. In Section 6,
we shall prove that the algorithm is sound, i.e., with inpatiadof this form, it stores all formal concepts,
each of them exactly once.

Remark 4.1. Notice that the canonicity test is expressed using a sumljrsee& of Algorithm 1. One
can easily see that we might as well use “logical or” provitleat all flags are assigned valugand1,
only. This can be achieved by slight modificationsAafr((n, B)) which appears in Definition 3.13 and
v defined in Definition 3.6. Indeed, the numerical value of tag fs not as important for the algorithm.
The important fact is whether at least one of the attributéstentD has nonzero flag, see Algorithm 1.

Table 4. lllustrative formal context
[K[lof1[2][3]a]5]

X | X

Qo ||
X

5. lllustrative Example

Before we investigate properties of Algorithm 1, we showeha illustrative running example in which
we demonstrate how @vPUTE behaves for particular input data. This illustration isfuséor getting
first (informal) insight into the algorithm. Consider an ingormal contextK = (X, Y, I') with objects
X = {a,b,c,d}, attributesY” = {0,1,2,3,4,5}, and] C X x Y as in Table 4. One can check ttat
has11 formal concepts, namely:

= ({a,b,¢,d}, 0), = ({d},{0,2,4}), Ry = ({c},{1,3,4}),
= ({6},{0,1,5}), RG = ({a,d},{2}), Rio = ({c, d}, {4}),

= (0,{0,1,2,3,4,5}), = ({a},{1,2,3}), R = {a,b,c}, {1}).
= ({b,d},{0}), Rs = ({a,¢},{1,3}),

Algorithm 1 proceeds foK as follows. First, an initial and clarifie®-context is created, denote it by
Kﬁ. Since inK all attributes are distinct and there is no attibute whickhared by all objectéKﬁ is
directly passed to GMPUTE as the initial argument. The initid-context is depicted in Figure 1 (top).

The execution of OMPUTE proceeds with selecting an attribute frd/rﬁ computing the closure and
reductloan, and recursive invocation of@VPUTE;
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K[ {53[{0}|{2}|{8}]{4}[{1}]

bl x| x X
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Figure 1. R-contexts produced by Algorithm 1 during computation.

line 1: store (X?, INT(K!, Y)) = ({a, b, c,d}, 0) = Ry

line 4: set(Cy, D) to CLOSUREK?, (0, {5})) = ({b}, {(0, {5}), (0, {0}), (0, {1})})

line 5: success fo{C2, D2) = ({b}, {(0,{5}),(0,{0}), (0,{1})}) because all flags afe
line 6: call COMPUTE(Kg) for Kg = REDUCE(K%,CQ,DQ)

Notice that in Figure 1, the recursive invocation is deldig anR-contextKﬁ2 connected WitiK% with
an edge labeled b{p } which is the original set of attributes present in attribiite{5}) € Ylﬁ. Moreover,
the computation continues as follows:

line 1: store (Xg, INT(Kg,Y» = ({b},{0,1,5}) = R,
line 4: set(C3, D3) to CLOSUREKKS, (0, {2,3,4})) = (0, {(0,{2,3,41)})
line 5: success fofC3, D3) = (0, {(0,{2,3,4})}) because all flags afe
line 6: call CbMPUTE(Kg) for Kg = REDUCE(K%, Cs, D3)

line 1: store <X§, INT(Kg,Y» = (0,{0,1,2,3,4,5}) = R3

1 return from invocation of ©mMPUTE for Kg
L return from invocation of ©MPUTE for Kg

Notice that sinceiKg is a trivial context with empty sets of objects and attrisytéhe invocation of
CoMPUTE has immediatelly returned after storiiy because the iteration of the for-loop is trivially
done for emptyY}f. Next, the computation resumes in the first invocation oMPUTE considering next
attribute:
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line 4: set(Cy, D4) to CLOSUREK?, (0, {0})) = ({b, d}, {(0, {0})})
line 5: success fo{Cy, D4) = ({b,d}, {(0,{0})}) because all flags afe
line 6: call COMPUTE(Kﬂ) for Ki = REDUCE(K§,04,D4)
line 1: store (X*, INT(K%, V)) = ({b,d}, {0}) = Ry
line 4: set(Cs, Ds) to CLOSUREIKY, (0, {31)) = (0, {(0, {3}), (1, {1,5}), (0, {2,4}1)})
line 5: failure for(C5, D) = (0, {(0,{3}), (1,{1,5}),(0,{2,4})}) becaus€l, {1,5}) € Ds

At this point, the canonicity test has failed. Therefores #igorithm does not continue witlt’s, D5)
which in fact determines formal concefi; that has been computed and processed before. This is the
only point where the canonicity test fails in this examplel avhere a concept is computed more than
once. Notice that it is not the case thaj is computed as such, the algorithm has compuyted Ds)

but anyhow,(C5, D5) would normally be used to determid®;, i.e. we can consideRs to be computed
twice. In Figure 1 the situation is depicted by a black squen@e labeled byRs. After this point, the
computation continues as follows (without further commsgnt

line 4: set(C5, D) to CLOSUREKY, (0, {2, 4})) = ({d}, {(0, {2,4})})
line 5: success fo(Cs, Ds) = ({d}, {(0,{2,4})}) because all flags afe
line 6: call CbMPUTE(Kg) for Kg = REDUCE(KZ, Cs, Ds)
line 1: store (X!, INT(KZ,Y)) = ({d}, {0, 2,4}) = Rs
L return from invocation of ©MPUTE for Kg
L return from invocation of ©MPUTE for Kﬁ
line 4: set(Cs, Dg) to CLOSUREK?, (0, {2})) = ({a, d}, {(0,{2})})
line 5: success fo{Cs, Dg) = ({a,d}, {(0,{2})}) because all flags afe
line 6: call COMPUTE(Kg) for K% = REDUCE(K§,06,D6)
line 1: store (X{, INT(K, Y)) = ({a, d}, {2}) = Rs
line 4: set(C7, D7) to CLOSURE(K%, 0,{1,3})) = ({a},{(0,{1,3}1)})
line 5: success fofC7, D7) = ({a},{(0,{1,3})}) because all flags afe
line 6: call COMPUTE(Kt;) for K’% = REDUCE(K%, C7,Dr)
line 1: store (X2, INT(KZ,Y)) = ({a}, {1,2,3}) = Ry
L return from invocation of ©MPUTE for K%
L return from invocation of ©mPUTE for K’é
line 4: set(Cs, Ds) to CLOSUREKY, (0, {3})) = ({a, c}, {(0, {3}), (0, {1})})
line 5: success fo{Cs, Dg) = ({a, c}, {(0,{3}),(0,{1})}) because all flags afe
line 6: call COMPUTE(KﬁB) for Kg = REDUCE(K%,Cg,Dg)
line 1: store (X%, INT(KS, Y)) = ({a, ¢}, {1,3}) = Rsg
line 4: set(Cy, Dy) to CLOSURE(K%, 0,{4}1)) = {c},{(0, {41 })
line 5: success fofCy, Dg) = ({c}, {(0,{4})}) because all flags afe
line 6: call CoMmPUTE(KY) for K, = REDUCE(KY, Cy, Do)
line 1: store (X2, INT(K5, Y)) = ({c}, {1,3,4}) = Ry
L return from invocation of ©mMPUTE for Kg
L return from invocation of ©mPUTE for Kﬁg
line 4: set(C4, D1g) to CLOSURHK 0,{4})) = {e, d}, {(0,{4H) })
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line 5: success fo{C1o, D1o) = ({c,d},{(0,{4})}) because all flags afe
line 6: call CompUTE(K? ) for K%, = REDUCE(K!, C19, D10)

line 1: store (Xfo, INT(K%,Y» = ({c,d},{4}) = R1o

L return from invocation of ©MPUTE for Kﬁo
line 4: set(C41, Dy;) to CLOSURHK?, 0,{1})) = {a,b,c}, {(0,{1H) })
line 5: success fofC11, D11) = ({a,b,c},{(0,{1})}) because all flags afe
line 6: call CompUTE(K?,) for K%, = REDUCE(K!, C1, D11)

line 1: store (X%, INT(K!,,Y)) = ({a, b, ¢}, {1}) = Ry

L return from invocation of ©MPUTE for Kth
1 return from invocation of ©MPUTE for Kﬁ

Remark 5.1. It is interesting to compare the presented algorithm wit©(b4, 15, 16] and FCbO [13,
23] in terms of formal concepts which are computed multipteess. In a similar way as in the case of our
algorithm, CbO an FCbO are recursively invoked and the caatjoun can therefore be expressed by a
corresponding call tree. Figure 2 shows a call tree for b@i® &nd FCbO applied to input formal context
from the example. The bold lines correspond to both CbO art; e dotted lines correspond only to
CbO. The black square nodes labeled by formal conceptssapréranches of computation where the
concepts are computed but fail the canonicity test. We caritet FCbO computesformal concepts
which fail the canonicity test. Thus, several concepts amputed multiple times. NamelR is
computed twiceR3 is computed three times, soig;, andRg and Ry and both computed twice. Recall
that our algorithm computes just a single formal conceptéwso this is an interesting improvement.
In the case of CbO, the improvement is even more visible diiece the number of computed concepts
which fail the canonicity test i$9. Section 7 shows experimental evaluation of average behafiour
algorithm compared to CbO and FCbO using various data sethwhows an interesting tendency that
the numbers of formal concepts computed multiple times byptiesented algorithm are much smaller.

6. Algorithm Properties and Soundness

In this section, we pay attention to properties of the athamiand prove its soundness which means that
for an input formal context, the algorithm stores each fdromacept exactly once. In other words, if
a formal concept is calculated several times, the algorigmsures that it is stored (e.g., printed as an
output or stored in an output data structure) at most oncegoner, the algorithm ensures that each
formal concept is stored at least once. The two conditiogstter yield that each formal concept is
stored exactly once.

We take the same assumptions as in Section 4. Hence, we afisatfte= (X, Y, I) is the input
formal context and that @uPUTE is invoked according to the steps described in Section 4.

In order to prove soundness of the algorithm, we first showehah R-context which is passed to
ComPUTE as an argument during the computation represents a formgxto That is, if one considers
line 1 of Algorithm 1, for such arR-context, the algorithm stores a couple which is a formalcept
in K. Notice that one can easily find dcontext for which this is not so. Therefore, we introduce th
following notion.
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Figure 2. Example of a call tree of FCbO with reduced numbégafnodes.

Definition 6.1. Let K* be anR-context derived fronK. We shall say thaK! is K-representative if
(X* INT(K®,Y)) is a formal concept ifK. u

The definition captures exactly the property that is neededdre (only) formal concepts. The next
assertion shows that the property is preserved during catige invocations of OMPUTE

Lemma 6.2. Let K* be aK-representativé?-context derived fronK and let(C, D) be a formal concept
in K* with D # ). Then, REbUucg(K!, C, D) is K-representative.

Proof:

Denote REDUcCE(K?, C, D) by K®. SinceK* is K-representative, we have tha#)™ = INT(K*, Y)
and NT(K*, Y)'« = X*. Moreover, sincgC, D) is assumed to be a formal conceptln, we have
C'«t = D and DY = C. We now show tha{C,INT(K? Y) U | D]) is a formal concept irK.
Notice that according to Definition 3.13, this would provattk™ is K-representative because by Defi-
nition 3.13, we haveNT(K™ V) = INT(K*, Y) U | D].

Using (2), we get D] = |CTx¢| C C™. SinceC C X*, we get NT(K!Y) = (XH)Tx C
C=. Putting the inclusions together, we geitr{K*, Y) U [ D| € C™«. In order to prove the converse
inclusion, it suffices to check thatif € C™< andy ¢ INT(K®,Y), theny € |D]. If y ¢ INT(K*,Y),
there is(n, B) € Y* such thaty € B. If in additiony € CT«, then(z,y) € I for all z € C. Using
Definition 3.1 (iii), (x,y) € I for allz € C'and ally € B, meaning thatz, (n, B)) € I* forallz € C.
Hence,(n, B) € C'xt = D which yieldsy € B C | D|. Altogether,C™ = INT(K*,Y) U | D]. Now,
using (3), we getINT(K!, Y) U [ D] )¥* = INT(KE, V) 0 | D ¥« = X0 |D¥* = Dkt =C. O

Corollary 6.3. All tuples stored during invocations of@PuTE are formal concepts iK.
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Proof:
The proof is obvious. Indeed, by induction and using Lemn2a éne can check that eadtrcontext
that is passed to @vpPUTE is K-representative. O

Notice that now it becomes apparent why we have removed abud#t shared by all objects from
the clarified initial R-context (see step 4 described in Section 4). Otherwiseartigment for the first
invocation of @WMPUTE would not beK-representative, meaning thab@puUTE would store a pair
which is not a formal concept (the attribute shared by aleotsi would not be present in intent of the
first stored pair).

The following assertion shows that Algorithm 1 provides eptete search for formal concepts, i.e.,
each formal concept is stored at least once.

Lemma 6.4. During the invocations of GMPUTE, each formal concept iK is stored at least once.

Proof:
For brevity, we denote ij? < K? the fact that if @MPUTE is invoked with Kf then during its

invocation, it invokes itself witth. Therefore,K§ is equal to I%DUCE(K?, C, D) for someC andD.

Take formal conceptE, F') in K. We prove that there is a sequeriﬁé < - < K of K-
representativek-contexts derived fronk such thatx} = E anth{ is the argument of the first invoca-
tion of ComPUTE. This would prove that formal concepE, F') will be stored by @mpPUTE invoked
with K%,

We construct the sequence as follows. The first eIerKén's determined uniquely. Assume that we
have constructed firgtelements of the sequence and K)frwe have that if(n, B) € Yiﬁ andB C F,
thenn = 0. Observe that this property holds Kﬂ trivially since the flags of all attributes Mf are all
zero. If X! = E, we are done. Otherwise, we show that we can chodéer@presentativek-context
K?H derived fromK such thatk? < K?H for which we have that ifn, B) Y;L andB C F, then
n = 0. Thus, if Xf O FE, then LY}J NF # 10 becauseK? is K-representative. Thus, we can take
(n,B) € Y;ﬁ such thatB N F' # () and f((n, B)) < f({n’, B")) is true for all(n’, B’) € Y;ﬁ satisfying
B’'N F # (). Recall thatf is the bijective map which determines the order (i.e., tlkcis) of attributes
in Kf

Moreover,B N F # () yields there ig) € B such thaty € ET<. Hencey < LETKH which in turn
means thaB C LETKH because all attributes from# are indistinguishable on objects frof C Xf.
Therefore,B C LETKEJ C F. SinceB C F and(n,B) € Yiﬁ, we have by assumptiom = 0. Hence,

for attribute (n, B), Algoritm 1 can proceed to line 4. LéC, D) be defined byC' = {(n,B>}¢K5

) . . . .
andD = C * which corresponds to calling ©SURE with Kf and(n, B) as its arguments. We now

check that the canonicity test succeeds(rif, B’ € D, then clearlyB’ C F becauseB C F and
(x,(n',B") € If holds for anyz € Xf such that(z, (n, B)) € If. Hence, using the assumption, it
follows thatn’ = 0. Thus, all flags of attributes fror are zero, i.e. the canonicity test succeeds. As a
consequence, we can rjﬂﬂﬂ — Rebucge(KY, €, D) and we havé&k? < K?, . Moreover, Lemma 6.2

i1
yields thath 41 Is K-representative.
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It remains to show thaiK§+1 satisfies the property that {i, B) € YﬁH andB C F, thenn = 0.
Take any(n, B) € YﬁH such thatB C F. Sincng 41 results by reduction and clarification, there are
(nj,B;) € Y} (j € J) such thatB = Ujes Bj- We haveB; C F (j € J), ie,n; = 0. Since

{ . .
K?H = REDUCE(K?,C,D) for C = {(n,B)} “ where (n, B) was chosen with the least possible

index according tof, during the reduction, no attribute:;, B;) was given a nonzero flag. During the
subsequent clarification, some of the attributes 53;) can be merged together with other attributes with
zero flags but they cannot be merged with attributes with eanfiags (otherwise, it would contradict
the fact that' £, F') is a formal concept). Therefore,= ZjeJ n; = 0, proving the property foKfH.
In order to finish the proof, observe that the sequence caxteaded only finitely may times and

for Kf =< KLP we haveXZ’.j D XfH D E. Hence, after finitely many steps, we obt&in with £ = X7,
and thust' = INT(K?Z, Y) sinceK?1 if K-representative. O

Theorem 6.5. (soundness of Algorithm 1)
During the invocations of GMPUTE, each formal concept i is stored exactly once.

Proof:

Using Lemma 6.4, each formal conceptinis stored at least once. Thus, it suffices to prove that each
of them is stored at most once. We prove this by showing umigge of sequences constructed in the
proof of Lemma 6.4. Inspecting the proof of Lemma 6.4, one:&mlthaﬂKﬁJrl is determined frong

by reduction which uses a formal conceptﬂ«{tﬁ generated by the least possible attribite B) € Yf
such thatB C F'. If we would have chosen other attribute’, B’) € Yiﬁ such thatB’ C F instead

of (n, B), thenK!,, = REDUCE(K:, C, D) for C' = {(n’,B’>}¢K5 and D — C'* would contain an
attribute (n”, B”) such thatB” N F # (), B C B”, andn” > 0. The attribute(n”, B”) would remain
in any R-context (either directly or being merged with other atités) that would further extend the
sequence. This follows from the fact that once an attrib@e dé nonzero flag, it is not removed by
any reduction from arRR-context (it can be merged together with other attributesnduclarification
but the nonzero flag remains). Thus, the selectiodfB’) € Yf would cause that the sequence

K<< K? < Kﬁﬂ cannot be extended to a sequence where the last elemenfisantextk,

1
with XE = F, meaning thatE, F') would not be stored. Altogether, we have shown that for anyp&b
concept the sequence constructed in the proof of Lemma @ridsiely given. O

7. Complexity and Efficiency Issues

In this section, we inspect worst-case complexity of Algori 1 and the underlying operations and
present experimental evaluation of its performance coatptr other algorithms from the CbO family.
The asymptotic worst-case time complexity of Algorithm lhe same as in the case of CbO and
FCbO, i.e.O(|B(X,Y,I)|-|X|-|Y|?). Indeed, for each formal concept, i.e., for each invocatib@om-
PUTE, one has to determine the reduced and clarified context vidhitble argument passed t@@PUTE.
This can be done as follows: first, one sorts all attributemiR-context according to their support. If the
support of two different attributes is the same, the attébican be additionally sorted lexicographically
according to sets of objects having those attributes. Tdnsbe done IO (| X|-|Y|-log |Y'|) time. Then,
attributes that need to be grouped together during clatificaan be identified in a single pass through
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the set of attributes and the sets of objects having thdatés, i.e. inO(|.X|-|Y]) time. Altogether, the
R-context is determined i®(|.X|-|Y|-log |Y|) time. Then, Algorithm 1 proceeds as in CbO, i.e., for
each attribute, it computes a new closur®if}.X |-|Y|) time and performs the canonicity testdr|Y|)
time. Thus, a single invocation of@PuUTE is done inO(| X |-|Y|?) time, showing that the asymptotic
worst-case time complexity of the algorithm(¥|B(X,Y, I)|-|X|-|Y'|?). In the case of time delay [10],
Algorithm 1 has the same polynomial time del@y|Y'|3-| X|) as CbO, cf. [17]. The argument remains
the same as in the case of CbO.

In order to show the performance of the algorithm comparedther algorithms from the CbO
family, we present a set of experiments involving both reaftd and artificial datasets and comparison
with similar algorithms. All the experiments focus on theatommumber of computed closures since it is a
feature significantly affecting performance of all the aitfons in the CbO family. Table 5 shows counts
of closures computed while processing real-world datasgtgy the CbO, FCbO, and Algorithm 1. Note
that the table contains two rows for results of both FCbO ab® CT'he rows labeled “ordered” present
efficiency of the algorithms if the additional preprocegsitep of ordering attributes of input data table
according to their support is applied, cf. [13].

From Table 5 it follows that the new algorithm needs to coramansiderably less closures than the
other algorithms. It seems that this is a general tendenieg.t@ndency is further illustrated by Table 6
and Table 7 containing average counts of computed closulnde wrocessing a set of 1,000 artificial
data tables. For this experiment we have considered tabkzed0 x 50, where density of 1s is 10 %
and 33 %, respectively, and 1s are distributed approximat@imally among attributes.

Table 5. Number of closures computed by selected algorithons CbO family

debian tags anon. web. mushroom tic-tac-tpe
size 14,315 x 475 32,710 x 295 8,124 x 119 958 x 29
density <1% 1% 19% 34 %
# concepts 38,977 129,009 238,710 59, 505
Algorithm 1 44,221 135,925 246,181 65, 567
FCbO (ordered) 208, 641 398,147 299,201 89,930
FCbO 679,911 1,475,341 426,563 128,434
CbO (ordered) 960, 106 785,394 1,321,524 185,738
CbO 12,045,680 27,949, 552 4,006, 498 221,608

Table 6. Computed closures in datasets of 8ixe 50 with 10 % density of 1s

mean value  standard deviation = median valjie
CbhO 3,359.88 505.51 3294
CbO (ordered) 1,394.08 78.19 1,395
FCbO 860.41 49.17 860
FCDbO (ordered) 853.87 47.80 852
Algorithm 1 240.83 8.34 241
# concepts 227.58 6.79 228
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Table 7. Computed closures in datasets of 5ize 50 with 33 % density of 1s

mean value  standard deviation median vallie
ChO 332,253.55 65,135.75 326,097
CbO (ordered) 44,074.43 6, 345.95 43,975
FCbhO 43, 787.87 6,175.53 43,778
FCbO (ordered) 32,059.09 4,350.26 32,057
Algorithm 1 25,754.40 3,965.85 25,776
# concepts 24,945.64 3,401.93 24,958

Table 8. Ratios of concepts computed multiple times

debian tags anon. web. mushroom tic-tac-tpe
size 14,315 x 475 32,710 x 295 8,124 x 119 958 x 29
density <1% 1% 19% 34 %
Algorithm 1 0.13 0.05 0.03 0.10
FCDbO (ordered) 6.66 2.08 0.25 0.51
FCbO 16.44 10.43 0.78 1.15
CbO (ordered) 23.63 5.08 4.53 2.12
CbO 308.04 215.64 15.78 2.72

Apparently, the new method of computing formal conceptsredunce the total number of computed
closures by several orders of magnitude. The factor of ingrent depends on many aspects, especially
the size of input data. To reduce the influence of this aspkitewvaluating algorithms, we use the ratio
of concepts computed multiple times (i.e., redundant gotsdeo the total number of concepts present
in the dataset. Table 8 depicts such ratios for previoudgudised real-world datasets. As one can see,
the new algorithm while processingushroomdataset computes only 3% of concepts multiple times.
This strongly contrasts with CbO which computes more thaedif times more concepts than necessary.
Furthermore, in case of large and sparse datasetatiieymous webnddebian tagghe new algorithm
needs to compute only a small fraction of concepts multiphees. This is also a remarkable contrast
with the other algorithms since, for instance, CbO compates hundreds of times more concepts than
Algorithm 1.

These tendencies are quite general. For instance, Figugpitsl ratios of concepts computed mul-
tiple times and their relationship to the number of attisuin the formal context. In this experiment,
we have used multiple randomly generated formal contextgdl,000 objects and various counts of
attributes. We have considered data tables with density B&aaproximately normal distribution of
1s among attributes. Interestingly, it seems that the numbebjects has no noticeable impact on the
efficiency in terms of concepts computed multiple times as ghown, e.g., in Figure 4. This figure
presents efficiency of algorithms in relationship to the hamof objects. In this experiment we have
also used artificial datasets and each data table had 1ty various counts of objects, and 1s were
distributed approximately normally among attributes vt density. Note that, since CbO (without
the preprocessing step) shows a very poor performances ibéan omitted from the chart for the sake
of readability.
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