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Abstract. We present a novel approach to compute formal concepts of formal context. In terms
of operations with Boolean matrices, the presented algorithm computes all maximal rectangles of
the input Boolean matrix which are full of1s. The algorithm combines basic ideas of previous
approaches with our recent observations on the influence of attribute permutations and attribute
sorting on the number of formal concepts which are computed multiple times. As a result, we
present algorithm which computes formal concepts by successive context reduction and attribute
sorting. We prove its soundness, discuss its complexity andefficiency, and show that it outperforms
other algorithms from the CbO family in terms of substantially lower numbers of formal concepts
which are computed multiple times.

1. Introduction and Problem Setting

Formal concept analysis (FCA) is a method of relational dataanalysis proposed by R. Wille [27] in early
80’s. Since its inception, there has been an extensive theoretical research which has lead to many order-
theoretical results, see [7] for a survey. Another, maybe equally important fact is that the results have
been directly applied to various fields of data analysis including analysis in software engineering [25, 26],
web information retrieval [11], and market-basket analysis [29]. Examples of FCA applications can be
found in [4, 7].
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In its basic setting, FCA deals with object-attribute relational data which can be seen as a data table
with rows corresponding to objects, columns correspondingto attributes (features), and table entries
being1 or 0, indicating whether objects have or do not have corresponding attributes. Formally, such
data tables can be seen as binary relations between a set of objects and a set of attributes. The aim of
FCA is to extract from such input data useful information about interesting object-attribute biclusters
and attribute dependencies which are present in data. The outputs of FCA are used either directly or for
preprocessing purposes. In the first case, extracted object-attribute clusters (so-called formal concepts)
are ordered by a subconcept-superconcept hierarchy and canbe presented to users by a line diagram
of clusters (diagram of so-called concept lattice). The users can then navigate though the hierarchy to
find clusters, identified by sets of objects and attributes that are covered by the clusters, which represent
interesting and/or useful information for them. For instance, in an object-attribute database of cars and
their features, users can find clusters like “affordable andsafe cars”, “four-wheel drive SUVs”, etc.,
which they may find interesting. Note that the interpretation of a cluster as a concept having its extent
(objects that fall under the concept) and its intent (attributes that fall under the concept) which is used in
FCA is inspired by a traditional understanding of concept which goes back to Port-Royal logic [5, 18].

If FCA is used for preprocessing, the extracted clusters (formal concepts) are not used by users di-
rectly. Instead, they are used as input for other data miningmethods. For instance, the seminal paper [24]
showed that the formal concepts can be used to find non-redundant association rules, cf. also [29]. Re-
cently, it has been shown in [3] that formal concepts can be used to find optimal factorization of Boolean
matrices. In fact, it can be shown that they correspond to optimal solutions of the discrete basis problem
discussed by Miettinen et al. [21].

In either case, the basic computational problem of FCA is to compute, given an input formal context
(an object-attribute data table), the set of all formal concepts (the object-attribute clusters present in the
input data). In the past, there have been proposed various algorithms for solving this task, see [17] for a
survey and comparison. Among the best-known algorithms areCbO [14, 15, 16] proposed by Kuznetsov,
Ganter’s NextClosure [6, 7], and Lindig’s UpperNeighbor [19] algorithms. There is an important family
of algorithms which includes CbO, NextClosure, the algorithm proposed by Norris [22], and other algo-
rithms such as PCbO [12], FCbO [13, 23], and InClose [2]. We call this family aCbO familybecause all
algorithms in the family can be seen as modifications or refinements of CbO. For instance, NextClosure
can be seen an iterative version of CbO, PCbO is a parallel variant of CbO, FCbO is a refinement of CbO
which uses a new canonicity test, etc. In a broader sense, theCbO family of algorithms can be seen as
an example of a family of algorithms for listing combinatorial structures [8].

A common issue that all algorithms for FCA have to care about is to prevent processing (e.g., storing
or listing) the same formal concept multiple times. There are several approaches to cope with the prob-
lem. The CbO family algorithms use canonicity tests which are generally very cheap to perform. The
basic idea is the following. Formal concepts are supposed tobe computed in a predefined order. If the
order is not preserved in a certain branch of computation (i.e., a newly computed formal concept does not
pass the canonicity test during the computation), the branch is no longer considered. As a consequence,
the canonicity test ensures that even if a formal concept is computed several times, it is processed (e.g.,
stored or listed) exactly once.

Although conceptually similar, algorithms from the CbO family differ in their efficiency. One of
the most important factors is just the efficiency of the underlying canonicity tests. For instance, FCbO
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uses a canonicity test which is more efficient than that of theoriginal CbO. In practice, the numbers of
formal concepts which are computed multiple times by FCbO isconsiderably smaller than the numbers
corresponding to CbO [13, 23]. Another efficiency issue which is related to canonicity tests is the order
in which attributes are processed by algorithms of the CbO family. In general, an important feature
of algorithms for FCA is whether their performance depends on the order of objects and attributes in
the input formal context. From this point of view, we shall call an algorithm (permutation) resistant
whenever all isomorphic copies (in the usual sense) of the input formal context require the same number
of elementary computation steps in order to compute all concepts. For our purposes, an elementary
computation step shall be represented by computation of a single formal concept. One can easily see
that, e.g., Lindig’s UpperNeighbor algorithm [19] is resistant. In other words, if we rearrange rows and
columns in the input data table, the algorithm uses the exactsame number of steps to compute all formal
concepts. On the other hand, algorithms from the CbO family are not resistant [13] and thus considering
different orders of attributes can reduce the number of concepts that are computed multiple times, thus
improving the efficiency.

The present paper is partly motivated by our observations from [13] where we have investigated the
impact of using different orders of attributes for algorithms from the CbO family. One of the results
presented in [13] says that if attributes of formal context are sorted in the ascending order according to
their supports, i.e., the numbers of objects having the attributes, then the canonicity test of both CbO and
FCbO always succeeds for all attribute concepts (concepts generated by a single attribute) provided that
all attributes are distinct (i.e., all columns of the input data table are pairwise distinct). Furthermore, our
empirical experiments have shown an interesting tendency that while processing formal contexts with
attributes sorted in the aforementioned order, canonicitytests tend to fail less frequently than in the case
of contexts containing inversions (with respect to the aforementioned order). In addition, with increasing
number of inversions in a data table, the average number of computed closures grows. This seems to be
a general tendency which has been experimentally observed in [13].

In the present paper, we elaborate on the ideas of attribute sorting. Motivated by the results of at-
tribute sorting presented in [13], we introduce a method forattribute sorting and context reduction which
is performed after obtaining a new formal concept. Unlike the approach in [13], where attribute sort-
ing was just a means of data preprocessing and was used for each input data exactly once (before the
computation which is then done by standard CbO or FCbO), we utilize attribute sorting during the com-
putation several times which results in a conceptually new algorithm. The idea of dynamic reordering of
attributes appeared in algorithm CHARM [28] for computing closed itemsets. In the paper, we describe
the algorithm, prove its soundness, and investigate its complexity and further efficiency issues related
to efficiency of its canonicity test. As we shall see in further sections, in terms of the numbers of con-
cepts computed multiple times, the proposed algorithm outperforms CbO by an order of magnitude. The
improvement is apparent especially in the case of large realdata sets [9].

The paper is organized as follows. Section 2 contains brief preliminaries from FCA. Section 3
introduces operations with formal contexts which are used to describe the algorithm. Section 4 introduces
the algorithm. Section 5 contains a detailed running example of the algorithm. Section 6 contains proof
of soundness of the algorithm. Finally, Section 7 is devotedto complexity and efficiency issues of the
algorithm and contains performance comparison with other algorithm from the CbO family.
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2. Preliminaries from FCA

In this section we recall basic notions of FCA. More details can be found in monographs [7] and [4].
Let X andY denote finite sets of objects and attributes, respectively.A formal context is a tripleK =
〈X,Y, I〉 whereI ⊆ X × Y , i.e. I is a binary relation betweenX andY . The fact〈x, y〉 ∈ I is
interpreted so that “objectx has attributey”. Note thatK obviously corresponds to a two-dimensional
data table with rows corresponding to objects fromX, columns corresponding to attributes fromY , and
table entries being1 and0 indicating whether〈x, y〉 ∈ I or 〈x, y〉 6∈ I. Thus, formal contexts can be
seen as Boolean matrices.

Given K = 〈X,Y, I〉, we introduce a pair of concept-forming operators [7]↑K : 2X → 2Y and
↓K : 2Y → 2X defined, for eachA ⊆ X andB ⊆ Y , byA↑K = {y ∈ Y | for eachx ∈ A : 〈x, y〉 ∈ I} and
B↓K = {x ∈ X | for eachy ∈ B : 〈x, y〉 ∈ I}, respectively. If there is no danger of confusion, we omit
K and write just↑ and↓ instead of↑K and↓K , respectively. The cardinality of{y}↓K is called the support
of y ∈ Y . By a formal concept inK with extentA and intentB we mean any pair〈A,B〉 ∈ 2X×2Y such
thatA↑K = B andB↓K = A. Thus, formal concepts are fixed points of the concept-forming operators.
Intuitively, each formal concept〈A,B〉 represents a bicluster inK which consists of objectsA that fall
under the concept and attributesB that fall under the concept. SinceA↑K = B andB↓K = A, A is a
set of objects having all attributes fromB andB is a set of attributes shared by all objects fromA. Let
us stress that formal concepts can be seen as maximal Booleansubmatrices in the following sense: any
〈A,B〉 ∈ 2X × 2Y such thatA × B ⊆ I can be called a Boolean submatrix ofK (which is full of 1s).
Moreover, a Boolean submatrix〈A,B〉 of K is a maximal one if, for each Boolean submatrix〈A′, B′〉
of K such thatA × B ⊆ A′ × B′, we haveA = A′ andB = B′. We have that〈A,B〉 ∈ 2X × 2Y is
a maximal Boolean submatrix ofK (which is full of 1s) iff A↑K = B andB↓K = A. Hence, maximal
Boolean submatrices full of1s are exactly the formal concepts.

The set of all formal concepts inK = 〈X,Y, I〉 will be denoted byB(X,Y, I). Recall thatB(X,Y, I)
endowed by a concept ordering≤ forms a complete lattice, called a concept lattice, whose structure is
described by the Basic Theorem of FCA [7, 27].

3. Clarification and Attribute Sorting

In this section, we introduce basic operations with contexts that are used to describe the proposed algo-
rithm for computing formal concepts. One of the distinguishing features of the algorithm is that during
the computation, it transforms an initial formal context into other contexts by taking subsets of objects
and by grouping several attributes together. In addition tothat, groups of attributes are sorted according
to their support and equipped with an additional numerical flag indicating whether a group of attributes
is allowed to be present in intents of formal concepts computed in next stages (a precise meaning of the
flag will be described later). These operations on contexts play a crucial role and will be described in
this section. We begin with particular representation of formal contexts.

3.1. Input Formal Contexts andR-contexts

Here we describe the basic form of formal concepts which are used during the computation. As in
case of any algorithm for computing formal concepts, the input for our algorithm is a formal context
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K = 〈X,Y, I〉. In order to keep information about groups of attributes, weuse particular contexts, called
R-contexts, to represent input data. A formal definition follows.

Definition 3.1. Given a formal contextK = 〈X,Y, I〉, a tripleK♯ = 〈X♯, Y ♯, I♯〉 is called anR-context
(derived fromK) if the following conditions are satisfied:

(i) X♯ ⊆ X;

(ii) Y ♯ ⊆ N0×2Y such that for any〈n1, B1〉 ∈ Y ♯ and〈n2, B2〉 ∈ Y ♯ we have either that (a)n1 = n2

andB1 = B2 6= ∅ or (b)B1 6= ∅, B2 6= ∅, andB1 ∩B2 = ∅;

(iii) for any x ∈ X♯ and〈n,B〉 ∈ Y ♯: 〈x, y1〉 ∈ I iff 〈x, y2〉 ∈ I holds true for ally1, y2 ∈ B;

(iv) I♯ = {〈x, 〈n,B〉〉 ∈ X♯ × Y ♯ | 〈x, y〉 ∈ I for all y ∈ B}.

In addition, K♯ = 〈X♯, Y ♯, I♯〉 is called aninitial R-context (derived fromK) if X♯ = X, Y ♯ =
{〈0, {y}〉 | y ∈ Y }, andI♯ = {〈x, 〈0, {y}〉〉 ∈ X♯ × Y ♯ | 〈x, y〉 ∈ I}. �

We can immediately observe basic properties ofR-contexts:

Remark 3.2. (a) EachR-context is a formal context. Notice that due to (iv),〈x, 〈n,B〉〉 ∈ I♯ iff x ∈
B↓K for x ∈ X♯ and〈n,B〉 ∈ Y ♯. Moreover, taking into account (iii) and (iv), it follows that for any
〈x, 〈n,B〉〉 ∈ X♯ × Y ♯, 〈x, 〈n,B〉〉 ∈ I♯ iff there isy ∈ B such that〈x, y〉 ∈ I in which case〈x, y〉 ∈ I
is true for ally ∈ B because of (iii). Note that each attribute〈n,B〉 ∈ Y ♯ has two parts: a numerical flag
n (explained later) and a subsetB ⊆ Y of original attributes. Using (ii), we get thatB 6= ∅. In addition to
that, distinct attributes fromY ♯ have associated pairwise disjoint nonempty subsets of original attributes.

(b) Note that attributes inR-contextK♯ = 〈X♯, Y ♯, I♯〉 have natural interpretation as sets of attributes
from the original context which are indistinguishable inK provided we restrict ourselves only to objects
from X♯. Indeed, this is a basic consequence of Definition 3.1 (iii).

(c) An initial R-context derived fromK is anR-context. Indeed, (i) and (ii) are obvious since
attributes of an initialR-context are all of the form〈0, {y}〉. It is immediate that (iii) and (iv) of Defini-
tion 3.1 are satisfied as well. Obviously, an initialR-contextK♯ derived fromK is isomorphic toK in
the usual sense. In other words,K

♯ is exactly the same asK up to the names of attributes.

From now on, we describe further operations with contexts interms ofR-contexts instead of the
original input contexts. By this we do not impose any restriction since an initialR-context derived from
K has the same concepts up to different names of attributes, see Remark 3.2 (c).

Example 3.3. As an example, we consider a formal contextK with objectsX = {a, . . . , f} and at-
tributesY = {0, . . . , 7}. The context (left) and anR-context derived fromK (right) are depicted in
Table 1. Notice that the original attributes1 and4 are distinguishable inK by objectc. On the other
hand, they are indistinguisbahle on{b, d, e, f}, hence the attribute〈0, {1, 4}〉 in Y ♯ is correct and satis-
fies the requirement given by Definition 3.1 (iii). Also, notethat all attributes inK♯ except for〈1, {2}〉
are given zero flags.

Remark 3.4. Note thatK♯ which results fromK is fully given by the setsX♯ andY ♯ of objects and
attributes, respectively. The binary relationI♯ can be determined from the originalI, see Remark 3.2 (a).
Thus, a concise computer representation ofK

♯ can consist of a list of objects and attributes, respectively,
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Table 1. Formal contextK (left) and anR-context derived fromK (right)

K 0 1 2 3 4 5 6 7

a × × ×

b × × × × ×

c × × ×

d × × × × × × ×

e × × × ×

f × × × × ×

K
♯ 〈0, {1, 4}〉 〈1, {2}〉 〈0, {3}〉 〈0, {6}〉 〈0, {7}〉

b × × ×

d × × × ×

e ×

f × × ×

omitting the expensive operation of copying a part of the data representation ofI which can be kept in
computer memory only once.

We conclude this subsection by showing that the concept-forming operators induced byR-contexts
have a close relationship to concept-forming operators of original contexts. In order to keep concise
notation, we first introduce the following abbreviation. For anyD ⊆ Y ♯, we define

⌊D⌋ =
⋃

{B ⊆ Y | 〈n,B〉 ∈ D}. (1)

Using this notation, we have:

Lemma 3.5. Let K♯ = 〈X♯, Y ♯, I♯〉 be anR-context derived fromK. Then, for anyC ⊆ X♯ and
D ⊆ Y ♯,

⌊C↑
K♯ ⌋ = C↑K ∩ ⌊Y ♯⌋, (2)

X♯ ∩ ⌊D⌋↓K = D↓
K♯ . (3)

Proof:
Both equalities can be proved using basic properties ofR-contexts.

“(2)”: Let y ∈ ⌊C↑
K♯ ⌋. Therefore, there is〈n,B〉 ∈ C↑

K♯ ⊆ Y ♯ such thaty ∈ B. Hence,y ∈ ⌊Y ♯⌋.
Moreover,〈n,B〉 ∈ C↑

K♯ yields that for eachx ∈ C, 〈x, 〈n,B〉〉 ∈ I♯. Due to Definition 3.1 (iv), the
latter means that for eachy ∈ B andx ∈ C, we have〈x, y〉 ∈ I. Therefore,B ⊆ C↑K , i.e.,y ∈ C↑K ,
showing⌊C↑

K♯⌋ ⊆ C↑K ∩ ⌊Y ♯⌋. Conversely, takey ∈ C↑K ∩ ⌊Y ♯⌋. Then, for eachx ∈ C, we have
that 〈x, y〉 ∈ I. Sincey ∈ ⌊Y ♯⌋, there is〈n,B〉 ∈ Y ♯ such thaty ∈ B. SinceC ⊆ X♯, using
Definition 3.1 (iii) and the previous fact, we get that for each y ∈ B andx ∈ C, 〈x, y〉 ∈ I. Thus, for
eachx ∈ C, 〈x, 〈n,B〉〉 ∈ I♯, meaning〈n,B〉 ∈ C↑

K♯ and thusy ∈ B ⊆ ⌊C↑
K♯ ⌋.

“(3)”: Considerx ∈ X♯ ∩ ⌊D⌋↓K . Therefore, for eachy ∈ ⌊D⌋, 〈x, y〉 ∈ I. In particular, for any
B ⊆ ⌊D⌋ such that〈n,B〉 ∈ D, we have〈x, y〉 ∈ I for all y ∈ B, i.e.,〈x, 〈n,B〉〉 ∈ I♯ sincex ∈ X♯.
Moreover,〈n,B〉 ∈ D has been taken arbitrarily, which means thatx ∈ D↓

K♯ . Conversely, letx ∈ D↓
K♯ .

By definition, we have〈x, 〈n,B〉〉 ∈ I♯ for all 〈n,B〉 ∈ D. Therefore,〈x, y〉 ∈ I for all y ∈ B such
that 〈n,B〉 ∈ D, meaning that〈x, y〉 ∈ I is true for ally ∈ ⌊D⌋. Therefore,x ∈ ⌊D⌋↓K . The fact that
x ∈ X♯ is trivial. ⊓⊔
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3.2. Clarification

EachR-context can be transformed into a newR-context with possibly smaller sets of attributes by a
process of clarification. Recall from [7] that a formal context K = 〈X,Y, I〉 is called clarified if for
anyy1, y2 ∈ Y it follows that{y1}↓ = {y2}

↓ impliesy1 = y2 and dually for any couple of objects. In
other words, a clarified context in sense of [7] is a formal context where all columns in the corresponding
object-attribute data table are distinct and dually for rows. It is a well known fact that taking a clarified
formal context (with duplicate rows and columns removed) instead of the original one we get a possibly
smaller context whose concept lattice is isomorphic to the concept lattice of the original context.

In this section, we focus on a particular clarification ofR-contexts which applies only to attributes
of R-contexts. In addition, the procedure of clarification we introduce here produces anR-context as a
result, i.e., we cope with particular form of attributes which consist of a flag and a set of attributes of the
original context, see Definition 3.1. The basic idea is the same as in [7], we produce a newR-context by
putting together identical columns of the corresponding data table.

For anyR-contextK♯ = 〈X♯, Y ♯, I♯〉 which is derived fromK, we can consider a binary relation
≡K♯ on Y ♯ such thaty1 ≡K♯ y2 iff {y1}

↓
K♯ = {y2}

↓
K♯ . Hence,y1 ≡K♯ y2 if columns of the data table

corresponding toK♯ given by attributesy1 andy2 are the same. Obviously,≡K♯ is an equivalence relation
and thus we may consider the corresponding quotient setY ♯/≡K♯ , denoting the equivalence class of≡K♯

containingy ∈ Y ♯ by [y]≡
K♯

. Under this notation, we introduce the following notion:

Definition 3.6. For anyR-contextK♯ = 〈X♯, Y ♯, I♯〉, we defineX∁, Y ∁, I∁ as follows:

(i) X∁ = X♯;

(ii) Y ∁ =
{〈

∑

{n ∈ N0 | 〈n,B〉 ∈ [y]≡
K♯
},
⌊

[y]≡
K♯

⌋〉

| y ∈ Y ♯
}

,

(iii) I∁ =
{

〈x, 〈n,B〉〉 ∈ X∁ × Y ∁ | there isn′ ≤ n andB′ ⊆ B such that〈x, 〈n′, B′〉〉 ∈ I♯
}

.

Moreover,K∁ = 〈X∁, Y ∁, I∁〉 is called aclarifiedR-context(which results fromK♯). �

Remark 3.7. Examining (ii) of Definition 3.6, the setY ∁ of attributes contains pairs〈n,B〉, wheren is
a numerical flag which results by taking a sum of flags of all attributes in a single equivalence class of
≡K♯ . Analogously,B is a union of sets of original attributes which can be found inattributes from the
same equivalence class. While the idea behind taking unionsof sets of attributes is clear since attributes
indistinguishable under≡K♯ are grouped together, the intuitive meaning of taking a sum of flags may
not be clear at this point. The informal explanation is the following: in 〈n,B〉 ∈ Y ♯, the numbern
says that “exactlyn of the original attributes fromB are not permitted to be used (at certain level of
computation)”. Thus, if we group attributes together, the numbers of attributes which are not permitted
are added since the sets of attributes are disjoint. A formaljustification will follow in Section 4.

The following assertion shows basic properties of clarifiedR-contexts.

Lemma 3.8. Each clarifiedR-contextK∁ is a well-definedR-context. Moreover, forK∁ we have that
≡

K∁ is identity. As a consequence,(K∁)∁ = K
∁.
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Proof:
It suffices to check requirements (ii)–(iv) of Definition 3.1. It is immediate that (ii) is satisfied since
Y ♯/≡K♯ consists of pairwise disjoint and nonempty classes which define attributes inK∁. Furthermore,
(iii) is satisfied because for anyx ∈ X∁ = X♯, 〈n,B〉 ∈ Y ∁, andy1, y2 ∈ B, there are〈n1, B1〉 ∈ Y ♯

and〈n2, B2〉 ∈ Y ♯ such thaty1 ∈ B1, y2 ∈ B2, and〈n1, B1〉 ≡K♯ 〈n2, B2〉. Therefore,〈x, y1〉 ∈ I iff
〈x, 〈n1, B1〉〉 ∈ I♯ iff 〈x, 〈n2, B2〉〉 ∈ I♯ iff 〈x, y2〉 ∈ I, i.e. (iii) is satisfied byK∁. In order to show (iv),
observe that by Definition 3.6,〈x, 〈n,B〉〉 ∈ I∁ iff there isn′ ≤ n andB′ ⊆ B such that〈n′, B′〉 ∈ Y ♯

and〈x, 〈n′, B′〉〉 ∈ I♯. Taking into account≡K♯ , 〈x, 〈n,B〉〉 ∈ I∁ iff for any 〈n′, B′〉 ∈ Y ♯ such that
n′ ≤ n andB′ ⊆ B, we have〈x, 〈n′, B′〉〉 ∈ I♯. Using Definition 3.1 (iv) which holds forK♯, the latter
is true iff for any〈n′, B′〉 ∈ Y ♯ such thatn′ ≤ n andB′ ⊆ B, we have〈x, y〉 ∈ I for all y ∈ B′, i.e.,
〈x, y〉 ∈ I for all y ∈ B becauseB is a union of all suchB′s, proving (iv) of Definition 3.1 forK∁. The
remaining claims follow easily. ⊓⊔

Table 2. ClarifiedR-contextK∁ (left) andK∁ with sorted attributes (right).

K
∁ 〈0, {1, 4}〉 〈1, {2, 7}〉 〈0, {3}〉 〈0, {6}〉

b × ×

d × × ×

e ×

f × ×

K
∁ 〈0, {6}〉 〈0, {1, 4}〉 〈0, {3}〉 〈1, {2, 7}〉

b × ×

d × × ×

e ×

f × ×

Example 3.9. ConsiderK andK♯ from Table 1. Then, the clarifiedR-context which results fromK♯

is depicted in Table 2. Notice that only original attributesthat have been put together are〈1, {2}〉 and
〈0, {7}〉. Since the flags are added, the flag of the resulting attribute〈1, {2, 7}〉 is equal to1. Flags of the
other attributes remain zero.

Remark 3.10. Notice that in our approach, we do not consider clarificationof objects, i.e.,K∁ may
contain several objects having the same attributes. Clarification of objects is not used in the subsequent
algorithm because in our approach it would not reduce the number of concepts computed multiple times
and is therefore omitted.

3.3. Attribute Sorting

The algorithm described in Section 4 relies on attribute sorting. In particular, for eachR-contextK♯ =
〈X♯, Y ♯, I♯〉, we consider a partial order≤♯ on Y ♯ such that for anyy1, y2 ∈ Y ♯, y1 ≤♯ y2 implies
|{y1}

↓
K♯ | ≤ |{y2}

↓
K♯ |. In general,≤♯ is not a linear order (not even in the case of clarifiedR-contexts)

but it can be extended to a linear order by a well-known procedure of topological sorting.
In next sections, we do not use≤♯ directly. Instead, we assume that we have a bijective map which

assigns to each attribute fromY ♯ its numerical index which represents a position in an ordered list of
attributes which are sorted according to (a linear extension of) ≤♯. In a more detail, for anyR-context
K

♯ = 〈X♯, Y ♯, I♯〉 we consider a bijective mapf : Y ♯ → {0, . . . , |Y ♯|−1} such that, for anyy1, y2 ∈ Y ♯,

if f(y1) ≤ f(y2), then|{y1}
↓
K♯ | ≤ |{y2}

↓
K♯ |. (4)
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The inversef−1 of f is a map which assigns to each indexj ∈ {0, . . . , |Y ♯| − 1} the corresponding
attributef−1(j) ∈ Y ♯.

Example 3.11. Any R-context can be depicted with attributes sorted according to f . That is, iff(y1) <
f(y2), theny1 is depicted beforey2. Table 2 (right) shows the results if we apply this idea to theR-
contextK∁ from Table 2 (left). Note that in this particular case, thereare two ways to definef since
attributes〈0, {1, 4}〉 and 〈0, {3}〉 have the same support. In such situations, we always consider an
arbitrary (but fixed)f for the sameR-context.

Remark 3.12. In [13], we have investigated the influence of attribute sorting for the CbO family of
algorithms. From this point of view, we have considered the same ordering of attributes according to
their support. An important distinguishing feature of the present approach is that we do not consider
single≤♯ (i.e., a singlef ) during the computation. Instead, during the computation,we successively
reduce the initialR-context and after each reduction, we determine newf which applies to the reduced
R-context.

3.4. Context Reduction

We now describe a particular reduction operation onR-contexts which utilizes operations onR-contexts
defined in previous sections. The algorithm described in Section 4 uses this operation directly to reduce
the problem of computing formal concepts of anR-context to the problem of computing formal concepts
of several smallerR-contexts. From this point of view, the proposed algorithm follows the usualdivide
et imperascheme of decomposing an instance of a problem into several instances of the same problem of
smaller sizes which in turn leads to a concise implementation of the algorithm by a recursive procedure.

The input for reduction is a clarifiedR-contextK♯ = 〈X♯, Y ♯, I♯〉 and a formal concept〈C,D〉 in K
♯

whose intent is nonempty, i.e.D 6= ∅. ForK♯, we assume that we are given a bijective map satisfying (4)
which determines the order of attributes inK♯. SinceD is nonempty, we can denote bymin(D) the least
attribute fromD with respect to the order given byf , i.e.,min(D) ∈ D such thatf(min(D)) ≤ f(y)
for all y ∈ D. Using this notation, we define the following notion:

Definition 3.13. For anyR-contextK♯ = 〈X♯, Y ♯, I♯〉, C ⊆ X♯, ∅ 6= D ⊆ Y ♯ such thatC↑
K♯ = D and

D↓
K♯ = C, we defineXR, Y R, andIR as follows:

(i) XR = C;

(ii) Y R = {Attr(y) | y ∈ Y ♯ andy 6∈ D}, whereAttr(y) ∈ N0 × 2Y is defined by

Attr(〈n,B〉) =







〈|B|, B〉, if n = 0 andf(〈n,B〉) < f(min(D)),

〈n,B〉, otherwise,
(5)

for any〈n,B〉 ∈ Y ♯;

(iii) IR =
{

〈x, 〈n,B〉〉 ∈ XR × Y R | there isn′ ≤ n such that〈x, 〈n′, B〉〉 ∈ I♯
}

. �

Remark 3.14. One can easily see thatKR = 〈XR, Y R, IR〉 as defined in Definition 3.13 is anR-context
with objects taken fromC, attributes being derived from attributes inY ♯ which are not present inD. Note
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that for each〈n,B〉 ∈ Y ♯ which is not inD, Y R contains an attribute〈n′, B〉 ∈ Y R, wheren′ is a new
flag. The value of the flag is either the same iff(〈n,B〉) is greater or equal tof(min(D)) or the flag
is equal to the size ofB. In other words, if〈n,B〉 is behindmin(D) in terms of the order of attributes,
the flag is not updated. The most important part of the flag update is that an attribute〈0, B〉 ∈ Y ♯ will
be given a nonzero flag inY R if it is not in D and if it stays beforemin(D) in terms of the order of
attributes.

In general,KR = 〈XR, Y R, IR〉 can contain two or more indistinguishable attributes (equal columns
in the corresponding data table), i.e.,K

R may not be clarified in sense of Definition 3.6. The algorithm
described in the next section relies on reduction and clarification ofR-contexts, we therefore introduce
the following notation:

Definition 3.15. If KR results fromK
♯ usingC andD in sense of Definition 3.13 and ifK∁ is a clarifi-

cation ofKR in sense of Definition 3.6, thenK∁ will be denoted by REDUCE(K♯, C,D). �

Table 3. Context from Definition 3.13 (left), result of REDUCE (middle), and its concise representation (right).

K
R 〈1, {6}〉 〈0, {3}〉 〈1, {2, 7}〉

d × ×

e

K
R 〈0, {3}〉 〈2, {2, 6, 7}〉

d ×

e

K
R {3} {2, 6, 7}

d ×

e

Example 3.16. ConsiderR-context from Table 2 (right). ForC = {d, e}, andD = {〈0, {1, 4}〉}, the
R-contextKR specified in Definition 3.13 is depicted in Table 3 (left). Notice that during the reduc-
tion, attribute〈1, {6}〉 was given a nonzero flag since its position according tof was before that of
attribute〈0, {1, 4}〉 in the originalR-context. Table 3 (middle) represents a clarified version ofK

R with
attributes sorted according to their supports. Hence, the middle table represents the result of REDUCE.
Table 3 (right) is a concise representation of the sameR-context in which columns corresponding to at-
tributes with nonzero flags are highlighted as gray (the descriptions of attributes then contain just sets of
original attributes, the numerical flags are omitted).

4. Algorithm

In this section, we describe the proposed algorithm for computing formal concepts. The main part
of the algorithm is a recursive procedure COMPUTE from Algorithm 1. The procedure accepts as its
argument a clarifiedR-context and during the computation it calls an auxiliary procedure CLOSURE

from Algorithm 2.
When invoked withK♯, procedure COMPUTE proceeds as follows. First, it stores a tuple which

consists of the set of objectsX♯ and INT(K♯, Y ), where

INT(K♯, Y ) = Y \ ⌊Y ♯⌋. (6)

Recall that⌊· · ·⌋ is defined by (1). Thus, INT(K♯, Y ) = Y \
⋃

{B ⊆ Y | 〈n,B〉 ∈ Y ♯}. Then, the
procedure goes over all attributes inY ♯ with zero flags (see lines 2 and 3 of Algorithm 1). For each such
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Algorithm 1: Procedure COMPUTE(K♯)

1 store 〈X♯, INT(K♯, Y )〉;
2 for 〈n,B〉 ∈ Y ♯ do
3 if n = 0 then
4 set〈C,D〉 to CLOSURE(K♯, 〈n,B〉);
5 if

∑

{n ∈ N0 | 〈n,B〉 ∈ D} = 0 then
6 COMPUTE(REDUCE(K♯ , C, D));
7 end
8 end
9 end

10 return

Algorithm 2: Procedure CLOSURE(K♯, 〈n,B〉)

1 C = {x ∈ X♯ | 〈x, 〈n,B〉〉 ∈ I♯};
2 D = {y ∈ Y ♯ | f(〈n,B〉) ≤ f(y)};
3 for x ∈ C do
4 for y ∈ D do
5 if 〈x, y〉 6∈ I♯ then
6 removey from D;
7 end
8 end
9 end

10 return 〈C,D〉

attribute〈n,B〉, the procedure invokes CLOSURE and the result of invocation is stored in〈C,D〉. An
easy inspection of the pseudocode in Algorithm 2 shows that the result of calling CLOSURE(K♯, 〈n,B〉)
is a formal concept inK♯ generated by attribute〈n,B〉, i.e.,C = {〈n,B〉}↓K♯ andD = C↑

K♯ . Notice that
Algorithm 2 utilizes attribute sorting together with the fact thatK♯ is clarified. In that case, all attributes
which belong toD must have their indices strictly greater than or equal tof(〈n,B〉). This observation
has already been made in [13].

Next step of Algorithm 1 is a canonicity test which succeeds iff all flags in D (computed in the
previous step) are zero, see line 5. In the case of success, COMPUTE invokes itself with reduced (and
clarified) formal context which results fromK♯, see line 6. Otherwise, the algorithm continues with
another attribute. When all attributes are processed, the invocation of COMPUTE for K♯ is left.

For input formal contextK = 〈X,Y, I〉, the first invocation of COMPUTE can be described by the
following consecutive steps:

1. take an initialR-contextK♯ = 〈X♯, Y ♯, I♯〉 derived fromK;

2. determine a clarifiedR-contextK∁ = 〈X∁, Y ∁, I∁〉 which results fromK♯;

3. if |{〈n,B〉}↓K∁ | < |X∁| for all 〈n,B〉 ∈ Y ∁ then call COMPUTE(K∁).
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4. if there is〈n,B〉 ∈ Y ∁ such that|{〈n,B〉}↓K∁ | = |X∁|, then call COMPUTE(K∗), where

K
∗ = 〈X∗, Y ∗, I∗〉 with X∗ = X∁, Y ∗ = Y ∁ \ {〈n,B〉}, andI∗ = I∁ ∩ (X∗ × Y ∗).

In other words,K is transformed into anR-context and clarified. If the resultingR-context contains
an attribute shared by all objects (notice that since it is clarified, such an attribute is at most one), it is
removed from theR-context. Then, COMPUTE is invoked with suchR-context as an input. In Section 6,
we shall prove that the algorithm is sound, i.e., with input data of this form, it stores all formal concepts,
each of them exactly once.

Remark 4.1. Notice that the canonicity test is expressed using a sum, seeline 5 of Algorithm 1. One
can easily see that we might as well use “logical or” providedthat all flags are assigned values0 and1,
only. This can be achieved by slight modifications ofAttr(〈n,B〉) which appears in Definition 3.13 and
Y ∁ defined in Definition 3.6. Indeed, the numerical value of the flag is not as important for the algorithm.
The important fact is whether at least one of the attributes in intentD has nonzero flag, see Algorithm 1.

Table 4. Illustrative formal context

K 0 1 2 3 4 5

a × × ×

b × × ×

c × × ×

d × × ×

5. Illustrative Example

Before we investigate properties of Algorithm 1, we show here an illustrative running example in which
we demonstrate how COMPUTE behaves for particular input data. This illustration is useful for getting
first (informal) insight into the algorithm. Consider an input formal contextK = 〈X,Y, I〉 with objects
X = {a, b, c, d}, attributesY = {0, 1, 2, 3, 4, 5}, andI ⊆ X × Y as in Table 4. One can check thatK

has11 formal concepts, namely:

R1 = 〈{a, b, c, d}, ∅〉, R5 = 〈{d}, {0, 2, 4}〉, R9 = 〈{c}, {1, 3, 4}〉,

R2 = 〈{b}, {0, 1, 5}〉, R6 = 〈{a, d}, {2}〉, R10 = 〈{c, d}, {4}〉,

R3 = 〈∅, {0, 1, 2, 3, 4, 5}〉, R7 = 〈{a}, {1, 2, 3}〉, R11 = 〈{a, b, c}, {1}〉.

R4 = 〈{b, d}, {0}〉, R8 = 〈{a, c}, {1, 3}〉,

Algorithm 1 proceeds forK as follows. First, an initial and clarifiedR-context is created, denote it by
K

♯
1
. Since inK all attributes are distinct and there is no attibute which isshared by all objects,K♯

1
is

directly passed to COMPUTE as the initial argument. The initialR-context is depicted in Figure 1 (top).
The execution of COMPUTE proceeds with selecting an attribute fromY ♯

1
, computing the closure and

reductionK♯
2
, and recursive invocation of COMPUTE:
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{4}{1, 3}{2, 4}{3}{2, 3, 4}

{1}{4}

{5} {3}{2}{0}

K
♯
11

{0, 5} {2} {4} {3}

a × ×

b ×

c × ×

K
♯
10

{5} {0, 2} {1, 3}

c ×

d ×

K
♯
9
{0, 2, 5}

c

K
♯
8
{0, 5} {2} {4}

a ×

c ×

K
♯
7
{0, 4, 5}

a

K
♯
6
{5} {0, 4} {1, 3}

a ×

d ×

K
♯
5
{1, 3, 5}

d
�

K
♯
4
{3} {1, 5} {2, 4}

b ×

d ×

K
♯
3

K
♯
2
{2, 3, 4}

b

K
♯
1
{5} {0} {2} {3} {4} {1}

a × × ×

b × × ×

c × × ×

d × × ×

Figure 1. R-contexts produced by Algorithm 1 during computation.

line 1: store 〈X♯
1
, INT(K♯

1
, Y )〉 = 〈{a, b, c, d}, ∅〉 = R1

line 4: set〈C2,D2〉 to CLOSURE(K♯
1
, 〈0, {5}〉) = 〈{b}, {〈0, {5}〉, 〈0, {0}〉, 〈0, {1}〉}〉

line 5: success for〈C2,D2〉 = 〈{b}, {〈0, {5}〉, 〈0, {0}〉, 〈0, {1}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

2
) for K♯

2
= REDUCE(K♯

1
,C2,D2)

Notice that in Figure 1, the recursive invocation is depicted by anR-contextK♯
2

connected withK♯
1

with
an edge labeled by{5} which is the original set of attributes present in attribute〈0, {5}〉 ∈ Y ♯

1
. Moreover,

the computation continues as follows:

line 1: store 〈X♯
2
, INT(K♯

2
, Y )〉 = 〈{b}, {0, 1, 5}〉 = R2

line 4: set〈C3,D3〉 to CLOSURE(K♯
2
, 〈0, {2, 3, 4}〉) = 〈∅, {〈0, {2, 3, 4}〉}〉

line 5: success for〈C3,D3〉 = 〈∅, {〈0, {2, 3, 4}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

3
) for K♯

3
= REDUCE(K♯

2
,C3,D3)

line 1: store 〈X♯
3
, INT(K♯

3
, Y )〉 = 〈∅, {0, 1, 2, 3, 4, 5}〉 = R3

⊥ return from invocation of COMPUTE for K♯
3

⊥ return from invocation of COMPUTE for K♯
2

Notice that sinceK♯
3

is a trivial context with empty sets of objects and attributes, the invocation of
COMPUTE has immediatelly returned after storingR3 because the iteration of the for-loop is trivially
done for emptyY ♯

3
. Next, the computation resumes in the first invocation of COMPUTE considering next

attribute:
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line 4: set〈C4,D4〉 to CLOSURE(K♯
1
, 〈0, {0}〉) = 〈{b, d}, {〈0, {0}〉}〉

line 5: success for〈C4,D4〉 = 〈{b, d}, {〈0, {0}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

4
) for K♯

4
= REDUCE(K♯

1
,C4,D4)

line 1: store 〈X♯
4
, INT(K♯

4
, Y )〉 = 〈{b, d}, {0}〉 = R4

line 4: set〈C5,D5〉 to CLOSURE(K♯
4
, 〈0, {3}〉) = 〈∅, {〈0, {3}〉, 〈1, {1, 5}〉, 〈0, {2, 4}〉}〉

line 5: failure for〈C5,D5〉 = 〈∅, {〈0, {3}〉, 〈1, {1, 5}〉, 〈0, {2, 4}〉}〉 because〈1, {1, 5}〉 ∈ D5

At this point, the canonicity test has failed. Therefore, the algorithm does not continue with〈C5,D5〉
which in fact determines formal conceptR3 that has been computed and processed before. This is the
only point where the canonicity test fails in this example and where a concept is computed more than
once. Notice that it is not the case thatR3 is computed as such, the algorithm has computed〈C5,D5〉
but anyhow,〈C5,D5〉 would normally be used to determineR3, i.e. we can considerR3 to be computed
twice. In Figure 1 the situation is depicted by a black squarenode labeled byR3. After this point, the
computation continues as follows (without further comments):

line 4: set〈C5,D5〉 to CLOSURE(K♯
4
, 〈0, {2, 4}〉) = 〈{d}, {〈0, {2, 4}〉}〉

line 5: success for〈C5,D5〉 = 〈{d}, {〈0, {2, 4}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

5
) for K♯

5
= REDUCE(K♯

4
,C5,D5)

line 1: store 〈X♯
5
, INT(K♯

5
, Y )〉 = 〈{d}, {0, 2, 4}〉 = R5

⊥ return from invocation of COMPUTE for K♯
5

⊥ return from invocation of COMPUTE for K♯
4

line 4: set〈C6,D6〉 to CLOSURE(K♯
1
, 〈0, {2}〉) = 〈{a, d}, {〈0, {2}〉}〉

line 5: success for〈C6,D6〉 = 〈{a, d}, {〈0, {2}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

6
) for K♯

6
= REDUCE(K♯

1
,C6,D6)

line 1: store 〈X♯
6
, INT(K♯

6
, Y )〉 = 〈{a, d}, {2}〉 = R6

line 4: set〈C7,D7〉 to CLOSURE(K♯
6
, 〈0, {1, 3}〉) = 〈{a}, {〈0, {1, 3}〉}〉

line 5: success for〈C7,D7〉 = 〈{a}, {〈0, {1, 3}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

7
) for K♯

7
= REDUCE(K♯

6
,C7,D7)

line 1: store 〈X♯
7
, INT(K♯

7
, Y )〉 = 〈{a}, {1, 2, 3}〉 = R7

⊥ return from invocation of COMPUTE for K♯
7

⊥ return from invocation of COMPUTE for K♯
6

line 4: set〈C8,D8〉 to CLOSURE(K♯
1
, 〈0, {3}〉) = 〈{a, c}, {〈0, {3}〉, 〈0, {1}〉}〉

line 5: success for〈C8,D8〉 = 〈{a, c}, {〈0, {3}〉, 〈0, {1}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

8
) for K♯

8
= REDUCE(K♯

1
,C8,D8)

line 1: store 〈X♯
8
, INT(K♯

8
, Y )〉 = 〈{a, c}, {1, 3}〉 = R8

line 4: set〈C9,D9〉 to CLOSURE(K♯
8
, 〈0, {4}〉) = 〈{c}, {〈0, {4}〉}〉

line 5: success for〈C9,D9〉 = 〈{c}, {〈0, {4}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

9
) for K♯

9
= REDUCE(K♯

8
,C9,D9)

line 1: store 〈X♯
9
, INT(K♯

9
, Y )〉 = 〈{c}, {1, 3, 4}〉 = R9

⊥ return from invocation of COMPUTE for K♯
9

⊥ return from invocation of COMPUTE for K♯
8

line 4: set〈C10,D10〉 to CLOSURE(K♯
1
, 〈0, {4}〉) = 〈{c, d}, {〈0, {4}〉}〉
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line 5: success for〈C10,D10〉 = 〈{c, d}, {〈0, {4}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

10
) for K♯

10
= REDUCE(K♯

1
,C10,D10)

line 1: store 〈X♯
10
, INT(K♯

10
, Y )〉 = 〈{c, d}, {4}〉 = R10

⊥ return from invocation of COMPUTE for K♯
10

line 4: set〈C11,D11〉 to CLOSURE(K♯
1
, 〈0, {1}〉) = 〈{a, b, c}, {〈0, {1}〉}〉

line 5: success for〈C11,D11〉 = 〈{a, b, c}, {〈0, {1}〉}〉 because all flags are0
line 6: call COMPUTE(K♯

11
) for K♯

11
= REDUCE(K♯

1
,C11,D11)

line 1: store 〈X♯
11
, INT(K♯

11
, Y )〉 = 〈{a, b, c}, {1}〉 = R11

⊥ return from invocation of COMPUTE for K♯
11

⊥ return from invocation of COMPUTE for K♯
1

Remark 5.1. It is interesting to compare the presented algorithm with CbO [14, 15, 16] and FCbO [13,
23] in terms of formal concepts which are computed multiple times. In a similar way as in the case of our
algorithm, CbO an FCbO are recursively invoked and the computation can therefore be expressed by a
corresponding call tree. Figure 2 shows a call tree for both CbO and FCbO applied to input formal context
from the example. The bold lines correspond to both CbO and FCbO, the dotted lines correspond only to
CbO. The black square nodes labeled by formal concepts represent branches of computation where the
concepts are computed but fail the canonicity test. We can see that FCbO computes7 formal concepts
which fail the canonicity test. Thus, several concepts are computed multiple times. Namely,R2 is
computed twice,R3 is computed three times, so isR5, andR8 andR9 and both computed twice. Recall
that our algorithm computes just a single formal concept twice, so this is an interesting improvement.
In the case of CbO, the improvement is even more visible sincehere the number of computed concepts
which fail the canonicity test is19. Section 7 shows experimental evaluation of average behavior of our
algorithm compared to CbO and FCbO using various data sets which shows an interesting tendency that
the numbers of formal concepts computed multiple times by the presented algorithm are much smaller.

6. Algorithm Properties and Soundness

In this section, we pay attention to properties of the algorithm and prove its soundness which means that
for an input formal context, the algorithm stores each formal concept exactly once. In other words, if
a formal concept is calculated several times, the algorithmensures that it is stored (e.g., printed as an
output or stored in an output data structure) at most once; moreover, the algorithm ensures that each
formal concept is stored at least once. The two conditions together yield that each formal concept is
stored exactly once.

We take the same assumptions as in Section 4. Hence, we assumethatK = 〈X,Y, I〉 is the input
formal context and that COMPUTE is invoked according to the steps described in Section 4.

In order to prove soundness of the algorithm, we first show that eachR-context which is passed to
COMPUTE as an argument during the computation represents a formal context. That is, if one considers
line 1 of Algorithm 1, for such anR-context, the algorithm stores a couple which is a formal concept
in K. Notice that one can easily find anR-context for which this is not so. Therefore, we introduce the
following notion.
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〈R1, 0〉

〈R6, 3〉

Figure 2. Example of a call tree of FCbO with reduced number ofleaf nodes.

Definition 6.1. Let K♯ be anR-context derived fromK. We shall say thatK♯ is K-representative if
〈X♯, INT(K♯, Y )〉 is a formal concept inK. �

The definition captures exactly the property that is needed to store (only) formal concepts. The next
assertion shows that the property is preserved during consecutive invocations of COMPUTE.

Lemma 6.2. LetK♯ be aK-representativeR-context derived fromK and let〈C,D〉 be a formal concept
in K

♯ with D 6= ∅. Then, REDUCE(K♯, C,D) is K-representative.

Proof:
Denote REDUCE(K♯, C,D) by K

R. SinceK♯ is K-representative, we have that(X♯)↑K = INT(K♯, Y )
and INT(K♯, Y )↓K = X♯. Moreover, since〈C,D〉 is assumed to be a formal concept inK♯, we have
C↑

K♯ = D andD↓
K♯ = C. We now show that〈C, INT(K♯, Y ) ∪ ⌊D⌋〉 is a formal concept inK.

Notice that according to Definition 3.13, this would prove thatKR is K-representative because by Defi-
nition 3.13, we have INT(KR, Y ) = INT(K♯, Y ) ∪ ⌊D⌋.

Using (2), we get⌊D⌋ = ⌊C↑
K♯⌋ ⊆ C↑K . SinceC ⊆ X♯, we get INT(K♯, Y ) = (X♯)↑K ⊆

C↑K . Putting the inclusions together, we get INT(K♯, Y ) ∪ ⌊D⌋ ⊆ C↑K . In order to prove the converse
inclusion, it suffices to check that ify ∈ C↑K andy 6∈ INT(K♯, Y ), theny ∈ ⌊D⌋. If y 6∈ INT(K♯, Y ),
there is〈n,B〉 ∈ Y ♯ such thaty ∈ B. If in addition y ∈ C↑K , then〈x, y〉 ∈ I for all x ∈ C. Using
Definition 3.1 (iii), 〈x, y〉 ∈ I for all x ∈ C and ally ∈ B, meaning that〈x, 〈n,B〉〉 ∈ I♯ for all x ∈ C.
Hence,〈n,B〉 ∈ C↑

K♯ = D which yieldsy ∈ B ⊆ ⌊D⌋. Altogether,C↑K = INT(K♯, Y ) ∪ ⌊D⌋. Now,
using (3), we get(INT(K♯, Y ) ∪ ⌊D⌋)↓K = INT(K♯, Y )↓K ∩ ⌊D⌋↓K = X♯ ∩ ⌊D⌋↓K = D↓

K♯ = C. ⊓⊔

Corollary 6.3. All tuples stored during invocations of COMPUTE are formal concepts inK.
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Proof:
The proof is obvious. Indeed, by induction and using Lemma 6.2, one can check that eachR-context
that is passed to COMPUTE is K-representative. ⊓⊔

Notice that now it becomes apparent why we have removed an attribute shared by all objects from
the clarified initialR-context (see step 4 described in Section 4). Otherwise, theargument for the first
invocation of COMPUTE would not beK-representative, meaning that COMPUTE would store a pair
which is not a formal concept (the attribute shared by all objects would not be present in intent of the
first stored pair).

The following assertion shows that Algorithm 1 provides a complete search for formal concepts, i.e.,
each formal concept is stored at least once.

Lemma 6.4. During the invocations of COMPUTE, each formal concept inK is stored at least once.

Proof:
For brevity, we denote byK♯

i ≺ K
♯
j the fact that if COMPUTE is invoked withK♯

i, then during its

invocation, it invokes itself withK♯
j. Therefore,K♯

j is equal to REDUCE(K♯
i , C,D) for someC andD.

Take formal concept〈E,F 〉 in K. We prove that there is a sequenceK♯
1

≺ · · · ≺ K
♯
n of K-

representativeR-contexts derived fromK such thatX♯
n = E andK♯

1
is the argument of the first invoca-

tion of COMPUTE. This would prove that formal concept〈E,F 〉 will be stored by COMPUTE invoked
with K

♯
n.

We construct the sequence as follows. The first elementK
♯
1

is determined uniquely. Assume that we
have constructed firsti elements of the sequence and forK

♯
i we have that if〈n,B〉 ∈ Y ♯

i andB ⊆ F ,
thenn = 0. Observe that this property holds forK♯

1
trivially since the flags of all attributes inY ♯

1
are all

zero. IfX♯
i = E, we are done. Otherwise, we show that we can choose aK-representativeR-context

K
♯
i+1

derived fromK such thatK♯
i ≺ K

♯
i+1

for which we have that if〈n,B〉 ∈ Y ♯
i+1

andB ⊆ F , then

n = 0. Thus, ifX♯
i ⊃ E, then⌊Y ♯

i ⌋ ∩ F 6= ∅ becauseK♯
i is K-representative. Thus, we can take

〈n,B〉 ∈ Y ♯
i such thatB ∩ F 6= ∅ andf(〈n,B〉) ≤ f(〈n′, B′〉) is true for all〈n′, B′〉 ∈ Y ♯

i satisfying
B′ ∩ F 6= ∅. Recall thatf is the bijective map which determines the order (i.e., the indices) of attributes
in K

♯
i.

Moreover,B ∩ F 6= ∅ yields there isy ∈ B such thaty ∈ E↑K . Hence,y ∈ ⌊E
↑
K
♯
i ⌋ which in turn

means thatB ⊆ ⌊E
↑
K
♯
i ⌋ because all attributes fromB are indistinguishable on objects fromE ⊆ X♯

i .

Therefore,B ⊆ ⌊E
↑
K
♯
i ⌋ ⊆ F . SinceB ⊆ F and〈n,B〉 ∈ Y ♯

i , we have by assumptionn = 0. Hence,

for attribute 〈n,B〉, Algoritm 1 can proceed to line 4. Let〈C,D〉 be defined byC = {〈n,B〉}
↓
K
♯
i

andD = C
↑
K
♯
i which corresponds to calling CLOSURE with K

♯
i and〈n,B〉 as its arguments. We now

check that the canonicity test succeeds. If〈n′, B′〉 ∈ D, then clearlyB′ ⊆ F becauseB ⊆ F and
〈x, 〈n′, B′〉〉 ∈ I♯i holds for anyx ∈ X♯

i such that〈x, 〈n,B〉〉 ∈ I♯i . Hence, using the assumption, it
follows thatn′ = 0. Thus, all flags of attributes fromD are zero, i.e. the canonicity test succeeds. As a
consequence, we can putK

♯
i+1

= REDUCE(K♯
i, C,D) and we haveK♯

i ≺ K
♯
i+1

. Moreover, Lemma 6.2

yields thatK♯
i+1

is K-representative.
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It remains to show thatK♯
i+1

satisfies the property that if〈n,B〉 ∈ Y ♯
i+1

andB ⊆ F , thenn = 0.

Take any〈n,B〉 ∈ Y ♯
i+1

such thatB ⊆ F . SinceK♯
i+1

results by reduction and clarification, there are

〈nj, Bj〉 ∈ Y ♯
i (j ∈ J) such thatB =

⋃

j∈J Bj. We haveBj ⊆ F (j ∈ J), i.e., nj = 0. Since

K
♯
i+1

= REDUCE(K♯
i , C,D) for C = {〈n,B〉}

↓
K
♯
i where〈n,B〉 was chosen with the least possible

index according tof , during the reduction, no attribute〈nj, Bj〉 was given a nonzero flag. During the
subsequent clarification, some of the attributes〈nj, Bj〉 can be merged together with other attributes with
zero flags but they cannot be merged with attributes with nonzero flags (otherwise, it would contradict
the fact that〈E,F 〉 is a formal concept). Therefore,n =

∑

j∈J nj = 0, proving the property forK♯
i+1

.
In order to finish the proof, observe that the sequence can be extended only finitely may times and

for K♯
i ≺ K

♯
i+1

, we haveX♯
i ⊃ X♯

i+1
⊇ E. Hence, after finitely many steps, we obtainK

♯
n with E = X♯

n

and thusF = INT(K♯
n, Y ) sinceK♯

n if K-representative. ⊓⊔

Theorem 6.5. (soundness of Algorithm 1)
During the invocations of COMPUTE, each formal concept inK is stored exactly once.

Proof:
Using Lemma 6.4, each formal concept inK is stored at least once. Thus, it suffices to prove that each
of them is stored at most once. We prove this by showing uniqueness of sequences constructed in the
proof of Lemma 6.4. Inspecting the proof of Lemma 6.4, one cansee thatK♯

i+1
is determined fromK♯

i

by reduction which uses a formal concept inK♯
i generated by the least possible attribute〈n,B〉 ∈ Y ♯

i

such thatB ⊆ F . If we would have chosen other attribute〈n′, B′〉 ∈ Y ♯
i such thatB′ ⊆ F instead

of 〈n,B〉, thenK♯
i+1

= REDUCE(K♯
i , C,D) for C = {〈n′, B′〉}

↓
K
♯
i andD = C

↑
K
♯
i would contain an

attribute〈n′′, B′′〉 such thatB′′ ∩ F 6= ∅, B ⊆ B′′, andn′′ > 0. The attribute〈n′′, B′′〉 would remain
in anyR-context (either directly or being merged with other attributes) that would further extend the
sequence. This follows from the fact that once an attribute has a nonzero flag, it is not removed by
any reduction from anR-context (it can be merged together with other attributes during clarification
but the nonzero flag remains). Thus, the selection of〈n′, B′〉 ∈ Y ♯

i would cause that the sequence
K

♯
1
≺ · · · ≺ K

♯
i ≺ K

♯
i+1

cannot be extended to a sequence where the last element is anR-contextK♯
n

with X♯
n = E, meaning that〈E,F 〉 would not be stored. Altogether, we have shown that for any formal

concept the sequence constructed in the proof of Lemma 6.4 isuniquely given. ⊓⊔

7. Complexity and Efficiency Issues

In this section, we inspect worst-case complexity of Algorithm 1 and the underlying operations and
present experimental evaluation of its performance compared to other algorithms from the CbO family.

The asymptotic worst-case time complexity of Algorithm 1 isthe same as in the case of CbO and
FCbO, i.e.,O(|B(X,Y, I)|·|X|·|Y |2). Indeed, for each formal concept, i.e., for each invocationof COM-
PUTE, one has to determine the reduced and clarified context whichis the argument passed to COMPUTE.
This can be done as follows: first, one sorts all attributes inanR-context according to their support. If the
support of two different attributes is the same, the attributes can be additionally sorted lexicographically
according to sets of objects having those attributes. This can be done inO(|X|·|Y |· log |Y |) time. Then,
attributes that need to be grouped together during clarification can be identified in a single pass through
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the set of attributes and the sets of objects having the attributes, i.e. inO(|X|·|Y |) time. Altogether, the
R-context is determined inO(|X|·|Y |· log |Y |) time. Then, Algorithm 1 proceeds as in CbO, i.e., for
each attribute, it computes a new closure inO(|X|·|Y |) time and performs the canonicity test inO(|Y |)
time. Thus, a single invocation of COMPUTE is done inO(|X|·|Y |2) time, showing that the asymptotic
worst-case time complexity of the algorithm isO(|B(X,Y, I)|·|X|·|Y |2). In the case of time delay [10],
Algorithm 1 has the same polynomial time delayO(|Y |3·|X|) as CbO, cf. [17]. The argument remains
the same as in the case of CbO.

In order to show the performance of the algorithm compared toother algorithms from the CbO
family, we present a set of experiments involving both real-world and artificial datasets and comparison
with similar algorithms. All the experiments focus on the total number of computed closures since it is a
feature significantly affecting performance of all the algorithms in the CbO family. Table 5 shows counts
of closures computed while processing real-world datasetsusing the CbO, FCbO, and Algorithm 1. Note
that the table contains two rows for results of both FCbO and CbO. The rows labeled “ordered” present
efficiency of the algorithms if the additional preprocessing step of ordering attributes of input data table
according to their support is applied, cf. [13].

From Table 5 it follows that the new algorithm needs to compute considerably less closures than the
other algorithms. It seems that this is a general tendency. The tendency is further illustrated by Table 6
and Table 7 containing average counts of computed closures while processing a set of 1,000 artificial
data tables. For this experiment we have considered tables of size50 × 50, where density of 1s is 10 %
and 33 %, respectively, and 1s are distributed approximately normally among attributes.

Table 5. Number of closures computed by selected algorithmsfrom CbO family

debian tags anon. web. mushroom tic-tac-toe
size 14, 315 × 475 32, 710 × 295 8, 124 × 119 958 × 29
density < 1% 1% 19% 34%

# concepts 38, 977 129, 009 238, 710 59, 505
Algorithm 1 44, 221 135, 925 246, 181 65, 567

FCbO (ordered) 298, 641 398, 147 299, 201 89, 930
FCbO 679, 911 1, 475, 341 426, 563 128, 434
CbO (ordered) 960, 106 785, 394 1, 321, 524 185, 738
CbO 12, 045, 680 27, 949, 552 4, 006, 498 221, 608

Table 6. Computed closures in datasets of size50× 50 with 10 % density of 1s

mean value standard deviation median value
CbO 3, 359.88 505.51 3294
CbO (ordered) 1, 394.08 78.19 1, 395
FCbO 860.41 49.17 860
FCbO (ordered) 853.87 47.80 852
Algorithm 1 240.83 8.34 241
# concepts 227.58 6.79 228
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Table 7. Computed closures in datasets of size50× 50 with 33 % density of 1s

mean value standard deviation median value
CbO 332, 253.55 65, 135.75 326, 097
CbO (ordered) 44, 074.43 6, 345.95 43, 975
FCbO 43, 787.87 6, 175.53 43, 778
FCbO (ordered) 32, 059.09 4, 350.26 32, 057
Algorithm 1 25, 754.40 3, 565.85 25, 776
# concepts 24, 945.64 3, 401.93 24, 958

Table 8. Ratios of concepts computed multiple times

debian tags anon. web. mushroom tic-tac-toe
size 14, 315 × 475 32, 710 × 295 8, 124 × 119 958× 29
density < 1% 1% 19% 34%

Algorithm 1 0.13 0.05 0.03 0.10
FCbO (ordered) 6.66 2.08 0.25 0.51
FCbO 16.44 10.43 0.78 1.15
CbO (ordered) 23.63 5.08 4.53 2.12
CbO 308.04 215.64 15.78 2.72

Apparently, the new method of computing formal concepts canreduce the total number of computed
closures by several orders of magnitude. The factor of improvement depends on many aspects, especially
the size of input data. To reduce the influence of this aspect while evaluating algorithms, we use the ratio
of concepts computed multiple times (i.e., redundant concepts) to the total number of concepts present
in the dataset. Table 8 depicts such ratios for previously discussed real-world datasets. As one can see,
the new algorithm while processingmushroomdataset computes only 3 % of concepts multiple times.
This strongly contrasts with CbO which computes more than fifteen times more concepts than necessary.
Furthermore, in case of large and sparse datasets likeanonymous webanddebian tagsthe new algorithm
needs to compute only a small fraction of concepts multiple times. This is also a remarkable contrast
with the other algorithms since, for instance, CbO computeseven hundreds of times more concepts than
Algorithm 1.

These tendencies are quite general. For instance, Figure 3 depicts ratios of concepts computed mul-
tiple times and their relationship to the number of attributes in the formal context. In this experiment,
we have used multiple randomly generated formal contexts having 1,000 objects and various counts of
attributes. We have considered data tables with density 5 % and approximately normal distribution of
1s among attributes. Interestingly, it seems that the number of objects has no noticeable impact on the
efficiency in terms of concepts computed multiple times as itis shown, e.g., in Figure 4. This figure
presents efficiency of algorithms in relationship to the number of objects. In this experiment we have
also used artificial datasets and each data table had 100 attributes, various counts of objects, and 1s were
distributed approximately normally among attributes with5 % density. Note that, since CbO (without
the preprocessing step) shows a very poor performance, it has been omitted from the chart for the sake
of readability.
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