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Abstract This paper presents a parallel algorithm for computing fixpoints of Galois
connections induced by object-attribute relational data. The algorithm results as a
parallelization of CbO (Kuznetsov 1999) in which we process disjoint sets of fixpoints
simultaneously. One of the distinctive features of the algorithm compared to other
parallel algorithms is that it avoids synchronization which has positive impacts on its
speed and implementation. We describe the parallel algorithm, prove its correctness,
and analyze its asymptotic complexity. Furthermore, we focus on implementation
issues, scalability of the algorithm, and provide an evaluation of its efficiency on
various data sets.
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1 Introduction

We propose a parallel algorithm for computing all fixpoints of Galois connections in-
duced by object-attribute incidence data. The fixpoints, called formal concepts [8, 19],
represent fundamental rectangular patterns that can be found in the data. Besides
their geometrical meaning, the fixpoints can be interpreted as formalizations of
natural concepts found in the input incidence data: each formal concept is given by
its extent, i.e. a set of all objects that fall under the concept, and intent, i.e. a set of all
attributes (features) that are covered by the concept. The set of all formal concepts
equipped with a subconcept–superconcept ordering forms a complete lattice which is
commonly called a concept lattice. Concept lattices and related incidence structures
are thoroughly studied by formal concept analysis—a discipline founded by Rudolf
Wille in the early 1980s. Since then, many theoretical results and applications of
formal concept analysis (FCA) appeared, see monograph [8] and a recent book [5]
for an overview.

The basic task which appears in virtually any application of FCA is to take the
input incidence data and compute the set of all formal concepts. The incidence data
is represented by a binary relation I ⊆ X × Y between a set X of objects and a set
Y of attributes (features). The data can be depicted by a two-dimensional table with
rows corresponding to objects, columns corresponding to attributes, and table entries
being ones and zeros indicating presence/absence of attributes. The limiting factor of
listing all formal concepts is that the problem is apparently hard as the associated
counting problem is #P-complete [13]. Fortunately, if |I| is considerably small, one
can get sets of all formal concepts in reasonable time even if X and Y are large. The
latter observation resulted in efforts of developing algorithms for FCA specialized
on sparse incidence data.

This paper contributes to the family of algorithms for FCA by showing a clear
and efficient way to parallelize the computation of concepts by splitting the set
of all formal concepts into disjoint subsets which can be computed simultaneously
with a minimal overhead. Our motivation for focusing on a parallel algorithm is
twofold. First, one of the main problems of FCA is how to deal with large-scale data.
The problem has become important recently as FCA is increasingly popular in the
data-mining community as a preprocessing technique. Efficient parallelization and
distribution over network may help overcome problems with delivering results in a
reasonable time (for input data of reasonable size). Second, parallel computing is
recently gaining interest as hardware manufactures are shifting their focus from im-
proving computing power by increasing clock frequencies to developing processors
with multiple cores. As the multiprocessor systems are becoming more affordable,
there will be an increasing pressure to deliver parallel algorithms to better utilize the
hardware. From these two points of view, research on parallel algorithms for FCA
seems to be promising.

There are several algorithms for computing formal concepts which are closely
related to our algorithm. Our algorithm can be seen as a parallelization of a simplified
version of CbO [14, 15] and the algorithm proposed by Norris [18]. Our algorithm
uses the same canonicity test for avoiding to process the same concept multiple
times. This idea also appears in Ganter’s algorithm [7] but our algorithm produces
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formal concepts in a different order. A detailed comparison will be presented in
Section 3.

The paper is organized as follows. In Section 2 we recall notions from formal
concept analysis. Section 3 describes the algorithm, shows its correctness, and
presents comments on the relationship to other algorithms. Furthermore, in Section 4
we discuss complexity and efficiency issues of the algorithm both theoretically and
experimentally. We focus on the scalability of the algorithm, i.e. the growth of its
performance with respect to the growing number of processors.

2 Preliminaries and notation

In this section we recall basic notions of the formal concept analysis. More details can
be found in monographs [8, 9] and [5]. Let X = {0, 1, . . . , m} and Y = {0, 1, . . . , n}
denote finite nonempty sets of objects and attributes, respectively. A formal context
is a triplet 〈X, Y, I〉 where I ⊆ X × Y, i.e. I is a binary relation between X and
Y. As usual, given 〈X, Y, I〉, we consider a pair of concept-forming operators [8]
↑I : 2X → 2Y and ↓I : 2Y → 2X defined, for each A ⊆ X and B ⊆ Y, by A↑I = {y ∈
Y | for each x ∈ A : 〈x, y〉 ∈ I} and B↓I = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}, respec-
tively. If there is no danger of confusion, we omit I and write just ↑ and ↓ instead of
↑I and ↓I , respectively. By a formal concept (in 〈X, Y, I〉) with extent A and intent B
we mean any pair 〈A, B〉 ∈ 2X × 2Y such that A↑I = B and B↓I = A. Thus, formal
concepts are fixpoints of the concept-forming operators. The set of all fixpoints
of 〈↑I , ↓I 〉 will be denoted by B(X, Y, I). The set B(X, Y, I) of all formal concepts
in 〈X, Y, I〉 can be equipped with a partial order ≤ modeling the subconcept–
superconcept hierarchy:

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (or, equivalently, iff B2 ⊆ B1). (1)

If 〈A1, B1〉 ≤ 〈A2, B2〉 then 〈A1, B1〉 is called a subconcept of 〈A2, B2〉. The set
B(X, Y, I) together with ≤ defined by (1) form a complete lattice whose structure is
described by the Basic Theorem of FCA [8]. For the purpose of illustration, we are
going to use the following

Example 1 Consider a formal context 〈X, Y, I〉 corresponding to the incidence data
table from Fig. 1 (left). The concept-forming operators induced by this context have
exactly 15 fixpoints (formal concepts) C1, . . . , C15:

C1 = 〈X, ∅〉, C6 = 〈{4}, {0, 1, 4, 5, 6, 7}〉, C11 = 〈{0, 2}, {1, 2, 5}〉,
C2 = 〈{1, 2, 4}, {0, 6}〉, C7 = 〈{1, 2}, {0, 3, 6}〉, C12 = 〈{0}, {1, 2, 4, 5, 7}〉,
C3 = 〈{2, 4}, {0, 1, 5, 6}〉, C8 = 〈{1}, {0, 3, 6, 7}〉, C13 = 〈{0, 3, 4}, {1, 4, 5}〉,
C4 = 〈{2}, {0, 1, 2, 3, 5, 6}〉, C9 = 〈{1, 4}, {0, 6, 7}〉, C14 = 〈{0, 4}, {1, 4, 5, 7}〉,
C5 = 〈∅, Y〉, C10 = 〈{0, 2, 3, 4}, {1, 5}〉, C15 = 〈{0, 1, 4}, {7}〉.
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Fig. 1 Formal context (left) and maximal rectangles (right) corresponding to C9 and C13

Hence, B(X, Y, I) = {C1, . . . , C15}. If we equip B(X, Y, I) with the partial order (1),
the resulting structure is the concept lattice of 〈X, Y, I〉.

Note that formal concepts in 〈X, Y, I〉 correspond to so-called maximal rectan-
gles [8] in 〈X, Y, I〉, cf. Fig. 1 (right).

3 Algorithm for computing all fixpoints

In this section we describe the algorithm for computing all fixpoints of a Galois
connection. We start by describing a subroutine which can be seen as a serial version
of the algorithm. The main idea behind the serial subroutine of our algorithm is the
same as in case of the algorithm Close-by-One (CbO) proposed by Kuznetsov in [15].
The parallel algorithm can be seen as several instances of the serial version working
simultaneously on disjoint subsets of concepts. Since Galois connections induced by
formal contexts are in fact the most general ones, we focus on fixpoints of 〈↑I , ↓I 〉 for
a given formal context 〈X, Y, I〉 such that X = {0, 1, . . . , m} and Y = {0, 1, . . . , n}.
Algorithm 1 Procedure GenerateFrom (〈A, B〉, y)

The core of the serial algorithm is a recursive procedure GenerateFrom, see
Algorithm 1, which lists all formal concepts using a depth-first search through the
space of all formal concepts. The procedure accepts a formal concept 〈A, B〉 (an
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initial formal concept) and an attribute y ∈ Y (first attribute to be processed) as
its arguments. The procedure recursively descends through the space of formal
concepts, beginning with the formal concept 〈A, B〉.

When invoked with 〈A, B〉 and y ∈ Y, GenerateFrom first processes 〈A, B〉 (e.g.,
prints it on the screen or stores it in a data structure, see line 1 of Algorithm 1) and
then it checks its halting condition, see lines 2–4. According to the halting condition,
the computation stops either when 〈A, B〉 equals 〈Y↓, Y〉 (the least formal concept
has been reached) or y > n (there are no more remaining attributes to be processed).
Otherwise, the procedure goes through all attributes j ∈ Y such that j ≥ y which
are not contained in the intent B (see lines 5 and 6). For each j ∈ Y having these
properties, a new pair 〈C, D〉 ∈ 2X × 2Y such that

〈C, D〉 = 〈A ∩ { j}↓, (A ∩ { j}↓)↑〉 (2)

is computed (lines 7 and 8). One can show that 〈C, D〉 is always a formal concept
such that B ⊂ D (see Remark 1 below). After obtaining 〈C, D〉, the algorithm
checks whether it should continue with 〈C, D〉 by recursively calling GenerateFrom
or whether 〈C, D〉 should be “skipped”. The test is based on comparing B ∩ Y j =
D ∩ Y j where Y j ⊆ Y is defined as follows:

Y j = {y ∈ Y | y < j}. (3)

The role of the test (see lines 9–11) is to prevent processing the same formal
concept multiple times. In the sequel we prove that GenerateFrom computes formal
concepts in a unique order which ensures that each formal concept is processed
exactly once.

Remark 1 If 〈A, B〉 is a formal concept then 〈C, D〉 computed in lines 7 and 8 of
Algorithm 1 is also a formal concept such that B ⊂ D and C ⊂ A provided that j �∈
B. Indeed, D = C↑ by definition. Moreover, C = A ∩ { j}↓ = B↓ ∩ { j}↓ = (B ∪ { j})↓.
Since ↓↑↓ equals ↓, we get D↓ = C↑↓ = (B ∪ { j})↓↑↓ = (B ∪ { j})↓ = C, i.e. 〈C, D〉 is a
formal concept. The facts B ⊂ D and C ⊂ A follow from properties of the concept-
forming operators ↓ and ↑ using j �∈ B.

In order to prove the correctness of Algorithm 1, we introduce so-called deriva-
tions which will correspond to recursive invocations of the procedure Generate-
From. Later, the derivations will be used to describe the parallel algorithm.

Definition 1 (Derivations of Formal Concepts) Let 〈X, Y, I〉 be a formal context
with Y = {0, . . . , n}. For formal concepts 〈A1, B1〉, 〈A2, B2〉 ∈ B(X, Y, I) and in-
tegers y1, y2 ∈ Y ∪ {n + 1} let 〈〈A1, B1〉, y1〉 � 〈〈A2, B2〉, y2〉 denote that for m =
y2 − 1 the following conditions

(i) m �∈ B1,
(ii) y1 < y2,
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(iii) B2 = (B1 ∪ {m})↓↑, and
(iv) B1 ∩ Ym = B2 ∩ Ym, where Ym is defined by (3)

are all satisfied. A derivation of 〈A, B〉∈ B(X, Y, I) of length k + 1 is any sequence

〈〈∅↓,∅↓↑〉, 0〉 = 〈〈A0, B0〉, y0〉, 〈〈A1, B1〉, y1〉, . . . , 〈〈Ak, Bk〉, yk〉 = 〈〈A, B〉, yk〉 (4)

such that 〈〈Ai, Bi〉, yi〉 � 〈〈Ai+1, Bi+1〉, yi+1〉 for each i = 0, . . . , k − 1. If 〈A, B〉 has a
derivation of length k we say that 〈A, B〉 is derivable in k steps.

It is easily seen that 〈〈A, B〉, y〉 � 〈〈C, D〉, k〉 iff the invocation of Generate-
From(〈A, B〉, y) causes GenerateFrom(〈C, D〉, k) to be called in line 10. Indeed (i)
ensures that the condition in line 6 of Algorithm 1 is satisfied, (ii) corresponds to the
fact that the loop between lines 5–13 goes from y upwards, (iii) is the intent computed
in line 8, and (iv) is true iff the condition in line 9 is true. Algorithm 1 and derivations
are further demonstrated by the following example.

Example 2 Consider the formal context 〈X, Y, I〉 from Fig. 1 (left). According to
Example 1, denote 〈∅↓, ∅↓↑〉 = 〈X, ∅〉 by C1. If GenerateFrom(C1, 0) is called, j goes
over all attributes from Y, starting with y = 0, see line 5. For j = 0, new formal
concept 〈C, D〉 with C = {1, 2, 4} and D = {0, 6} is computed (lines 7 and 8). Denote
the concept by C2. Since D ∩ Y0 = ∅ = B ∩ Y0, i.e. the test in line 9 is successful,
GenerateFrom(C2, 1) is invoked. In terms of derivations, we have 〈C1, 0〉 � 〈C2, 1〉.
During the invocation of GenerateFrom(C2, 1), j goes over all attributes starting
with 1. For j = 1, we get C = {2, 4}, D = {0, 1, 5, 6}. Since {0, 6} ∩ {0} = {0, 1, 5, 6} ∩
{0}, the test is successful and GenerateFrom(C3, 2) is invoked where C3 denotes
〈{2, 4}, {0, 1, 5, 6}〉. Thus, 〈C2, 1〉 � 〈C3, 2〉. In a similar way we get 〈C3, 2〉 � 〈C4, 3〉
and 〈C4, 3〉 � 〈C5, 5〉. When GenerateFrom(C5, 5) is invoked, all attributes are al-
ready present in the intent, i.e., the invocation of GenerateFrom(C5, 5) is terminated
and the computation goes back to GenerateFrom(C4, 3) with j ≥ 5. Since the
intent of C4 contains both 5 and 6, we continue with j = 7, for which we obtain
a formal concept 〈C, D〉 = 〈∅, Y〉 = C5 which has already been found. In this case,
the test in line 9 fails because B ∩ Y7 = {0, 1, 2, 3, 5, 6} �= {0, 1, 2, 3, 4, 5, 6} = D ∩ Y7.
Therefore, the invocation of GenerateFrom(C4, 3) is terminated because j = n = 7
is the last attribute and the computation proceeds with GenerateFrom(C3, 2) with
j ≥ 3. For j = 3, we obtain a concept 〈C, D〉 = C4 which has also been found and the
test fails because B ∩ Y3 = {0, 1} �= {0, 1, 2} = D ∩ Y3. For j = 4, we obtain a new
concept 〈C, D〉 = 〈{4}, {0, 1, 4, 5, 6, 7}〉 = C6 which has not been considered so far.
The test succeeds, GenerateFrom(C6, 5) is invoked, meaning 〈C3, 2〉 � 〈C6, 5〉, and
the computation continues in a similar way as before.

Remark 2 The computation of Algorithm 1 and the corresponding derivations can
be depicted by a tree as in Fig. 2. The tree contains two types of nodes. Nodes
represented by pairs 〈Ci, yi〉 represent arguments of GenerateFrom, i.e. each node
of this type represents an invocation of GenerateFrom. Leaf nodes denoted by black
squares represent computed concepts for which the test in line 9 fails. Each edge in
the tree is labeled by the current value of j which is used to compute a (new) formal
concept, see lines 7 and 8. We call such a tree a call tree of GenerateFrom for given
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Fig. 2 Example of a call tree for GenerateFrom(〈∅↓,∅↓↑〉, 0) with input data from Fig. 1

〈X, Y, I〉. A path from the root of the tree to any node labeled by 〈Ci, yi〉 corresponds
to a derivation of 〈Ci, yi〉. Later, we prove that the nodes labeled by 〈Ci, yi〉 are always
in a one-to-one correspondence with formal concepts in B(X, Y, I), showing that the
algorithm is correct.

The following assertions show the existence and uniqueness of derivations.

Lemma 1 (Existence of Derivations) For each formal concept 〈A, B〉∈ B(X, Y, I)
there is a derivation (4) such that yi = mi + 1 where

mi = min{y ∈ B | y �∈ Bi−1} (5)

for each 0 < i ≤ k.

Proof We prove by induction over i that 〈〈A0, B0〉, y0〉, . . . , 〈〈Ai, Bi〉, yi〉 is a deriva-
tion. Assume that the claim holds for 0, . . . , i − 1 < k. We prove that it holds for i.
Since i − 1 < k, B\Bi−1 �= ∅. Therefore, mi given by (5) and consequently yi = mi +
1 are well defined. Put Bi = (Bi−1 ∪ {mi})↓↑ and Ai = Ai−1 ∩ {mi}↓. We now prove
that 〈〈Ai−1, Bi−1〉, yi−1〉 � 〈〈Ai, Bi〉, yi〉 by checking Definition 1 (i)–(iv). Using (5),
yi − 1 = mi �∈ Bi−1, i.e. (i) is true. In order to prove (ii), we check that mi−1 < mi.
By contradiction, assume that mi ≤ mi−1. Obviously, mi−1 �= mi because mi �∈ Bi−1

and mi−1 ∈ Bi−1. Thus, assume mi < mi−1 �= 0. Since mi �∈ Bi−1 and Bi−2 ⊂ Bi−1, we
get mi �∈ Bi−2. Using the induction hypothesis, mi−1 = min{y ∈ B | y �∈ Bi−2} which
contradicts the facts that mi < mi−1 and mi �∈ Bi−2, proving (ii). Condition (iii) agrees
with the definition of Bi. It remains to check that Bi−1 ∩ Ymi = Bi ∩ Ymi . Since
Bi−1 ⊂ Bi = (Bi−1 ∪ {mi})↓↑ ⊆ B, mi is a minimum attribute such that mi ∈ Bi and
mi �∈ Bi−1. That is, for each y < mi, y ∈ Bi−1 iff y ∈ Bi. The latter is equivalent to
Bi−1 ∩ Ymi = Bi ∩ Ymi , showing (iv). ��
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Lemma 2 (Uniqueness of Derivations) Each formal concept 〈A, B〉∈ B(X, Y, I) has
at most one derivation.

Proof According to Lemma 1, we prove that each derivation of 〈A, B〉 equals to (4)
where yi = mi + 1 and mi are given by (5). By contradiction, let

〈〈A′
0, B′

0〉, y′
0〉, 〈〈A′

1, B′
1〉, y′

1〉, . . . , 〈〈A′
l, B′

l〉, y′
l〉

be another derivation of 〈A, B〉. Let i by the index such that y j = y′
j for all j < i and

yi �= y′
i. It is easily seen that A j = A′

j and B j = B′
j for all j < i. Furthermore, for mi

given by (5), we get mi ∈ Bi. The observations that mi �∈ B j = B′
j for all j < i and that

mi is the minimum attribute in B\Bi−1 = B\B′
i−1 yield mi �∈ B′

i because otherwise
B′

i−1 ∩ Yy′
i−1 = B′

i ∩ Yy′
i−1 would be violated. On the other hand, mi ∈ B = B′

l , i.e.
there must be an index j > i such that mi ∈ B′

j and mi �∈ B′
h for all h < j. In addition

to that, we have mi < y′
i − 1 < y′

j − 1. Therefore, mi ∈ B′
j ∩ Yy′

j−1 and mi �∈ B′
j−1 ∩

Yy′
j−1, contradicting the fact that B′

j−1 ∩ Yy′
j−1 = B′

j ∩ Yy′
j−1. ��

We now get the following consequence of Lemmas 1 and 2:

Theorem 1 (Correctness of Algorithm 1) When invoked with 〈∅↓,∅↓↑〉 and y = 0,
Algorithm 1 derives all formal concepts in 〈X, Y, I〉, each of them exactly once. ��

Remark 3 Algorithm 1 can be seen as a simplified version of CbO [14, 15]. We
formulate the algorithm by a recursive procedure GenerateFrom rather than by
backtracking as it is used in [15]. This has several benefits. First, GenerateFrom
is much closer to the actual implementation than the abstract description from [15].
Second, there is no need for explicit labeling of attributes which have been processed,
see [15], because each invocation of GenerateFrom has all the necessary information
in a local variable j. When computing new closures, we improve the efficiency of
the algorithm by going through only a subset of all attributes from Y, see line 5
of Algorithm 1. Finally, there is no need to build the CbO-tree [15] as a data
structure. The CbO-tree corresponds to the recursive invocations of GenerateFrom:
derivations from Definition 1 correspond to canonical paths in the CbO-tree, see [15].
Paths which are not canonical according to [15] can be seen as paths from the root
node of the call tree of GenerateFrom to nodes labeled by black squares, see Fig. 2.

Ganter’s algorithm [7] is also closely related to our algorithm but it lists formal
concepts in a different order. On the other hand, our algorithm can be easily
modified to produce formal concepts in the same order with a slight loss of the
performance. Indeed, during each invocation of GenerateFrom(〈A, B〉, y) it suffices
to (i) build a list L of all concepts 〈Ai, Bi〉 such that 〈〈A, B〉, y〉 � 〈〈Ai, Bi〉, ji〉 ( ji >

y) without invoking GenerateFrom(〈Ai, Bi〉, ji), then (ii) sort the list L according to
the lexicographic order [7] on the intents Bi, and (iii) recursively invoke Generate-
From(〈Ai, Bi〉, ji) for all 〈Ai, Bi〉 in the sorted list L according to the lexicographic
order.

We now turn our attention to the parallel algorithm. Assume that we have P
independent processors which can execute instructions simultaneously. These may
represent separate computers in a network or multiple processors in a system with
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shared memory. We assume that each processor has access to the context 〈X, Y, I〉.
Since 〈X, Y, I〉 is not altered during the computation, each processor can have its
own copy of 〈X, Y, I〉 or share one copy among multiple processors (in systems with
shared memory).

Algorithm 2 Procedur ParallelGenerateFrom (〈A, B〉, y, l)

The parallelization we propose consists in modification of GenerateFrom so that
particular subtrees of the call tree are computed simultaneously by P processors. The
idea is best explained when we consider a call tree like the one in Fig. 2. Recall that
GenerateFrom is a recursive procedure and its invocations during the computation
agree with the nodes labeled 〈Ci, yi〉 in the tree. Moreover, the order in which the
concepts are processed can be read directly from the call tree. It suffices to go through
the 〈Ci, yi〉 nodes in the depth-first order following the labels of edges from smallest
to biggest numbers. At any level of the call tree, we obtain a set of nodes which are
root nodes of disjoint subtrees. For instance, in Fig. 2, the second level of the call
tree contains nodes 〈C10, 2〉, 〈C15, 8〉, and 〈C2, 1〉. Two of the nodes are root nodes of
nontrivial subtrees which may be processed independently by two processors. This
suggests to modify GenerateFrom so that is goes through the call tree only up to
a certain predefined level L and then it lets P independent processors compute the
remaining concepts descendant to those on the Lth level. In terms of derivations,
see Definition 1, the algorithm first processes all concepts which are derivable in less
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than L steps. The remaining concepts are computed in parallel. Therefore, a parallel
procedure for computing concepts can be summarized by three consecutive stages:

Stage 1: Compute and process all concepts that are derivable in less than L steps.

Stage 2: Store all concepts derivable in L steps in P independent queues.

Stage 3: Initiate P processors and run the parallel computation: (i) let each of the
processors take exactly one of the queues; (ii) let each processor compute
all concepts (using Algorithm 1) beginning with those in its queue.

A parallel algorithm following this idea is represented by procedure Parallel-
GenerateFrom, see Algorithm 2. It is important to note that Algorithm 2 has
two parameters which are constant during the computation: P ≥ 1 (number of
processors) and L ≥ 2 (level of recursion, i.e. the maximum length of derivations
which are computed sequentially in Stage 1). The choice of values of P and L has an
influence of the practical performance of the algorithm. This issue will be addressed
later. Procedure ParallelGenerateFrom is a modification of GenerateFrom and
accepts one additional argument: a counter l which goes from 1 up to L and is used
to indicate lengths of derivations that are processed in Stage 1.

After its invocation, ParallelGenerateFrom proceeds as follows: The procedure
simulates the original GenerateFrom until is reaches the recursion level L, see the
code between lines 1–17. This agrees with Stage 1 as outlined above. There are two
technical differences between GenerateFrom and ParallelGenerateFrom:

– ParallelGenerateFrom increases the counter l upon each invocation, see
line 13. Obviously, if the procedure is initially called with l = 1 then during the
computation l is always equal to the current recursion level (call tree level). In
addition to that, formal concepts that are processed in line 6 are exactly the
concepts derivable in less than L steps.

– Instead of returning from the recursion, see the condition in line 7, the procedure
continues to the point where the original GenerateFrom ends. This step is taken
because ParallelGenerateFrom has to initiate the parallel computation after
the first two stages are finished, see lines 18–27.

When l equals L, ParallelGenerateFrom has reached the level of recursion at
which the serial algorithm stops, entering the Stage 2. In other words, l = L means
that the current formal concept 〈A, B〉 is derivable in L steps. Instead of processing
〈A, B〉 in line 6, the procedure performs the code between lines 2–4, i.e., it selects
one of the queues numbered 1, . . . , P, stores 〈〈A, B〉, y〉 in the queue, and exits this
branch of recursion. During this stage of computation, all formal concepts derivable
in L steps are stored in the queues.

Notice that the limit condition in line 1 also ensures that there are only finitely
many recursive invocations of ParallelGenerateFrom. Since L ≥ 2 and the initial
value of the counter l equals 1, the initial invocation of ParallelGenerateFrom is
never terminated in line 4. As a consequence, after finitely many steps, the initial
invocation of ParallelGenerateFrom gets to the line 18. Here, the condition suc-
ceeds because l = 1. Thus, the initial invocation proceeds with lines 19–26 which take
care of initiating the parallel computation: each processor goes over all 〈〈A, B〉, y〉 in
its queue and invokes the serial procedure GenerateFrom with 〈A, B〉 and y as its
arguments. The only synchronization that is used in the algorithm is that the initial
invocation waits until all processors finish the computation, see line 26. Also note that



Parallel algorithm for computing fixpoints of Galois connections 267

the condition in line 1 ensures that the parallel computation will be initiated exactly
once because there is only one invocation of ParallelGenerateFrom with l = 1.

Remark 4 The key issue with Algorithm 2 is how to distribute formal concepts
derivable in L steps into P queues. In fact, by selecting a queue in which we
put 〈〈C, D〉, y〉 we select a processor which will list all formal concepts descendant
to 〈C, D〉. The optimal selection method should distribute all formal concepts to
processors uniformly. This is, however, very hard to achieve since we do not know
the distribution of formal concepts in the search space of all formal concepts until
we actually compute them all and reveal the structure of the call tree. In the present
version of the algorithm we select queuer based on a simple round-robin principle:
the index r is computed as r = (N mod P) + 1 where N denotes the number of formal
concepts stored so far. This principle, albeit simple, turned out to be efficient for both
the real-world datasets and randomly generated data, see Section 4.

Our algorithm can be seen as having two parts: first, a part which distributes
concepts into queues and, second, a part which runs several instances of the ordinary
Close-by-One in parallel. Because of this reliance on CbO, we call our algorithm
Parallel Close-by-One (PCbO). The following assertion shows correctness of PCbO:

Theorem 2 (Correctness of PCbO) When invoked with 〈∅↓, ∅↓↑〉, y = 0, and l = 1,
Algorithm 2 derives all formal concepts in 〈X, Y, I〉, each of them exactly once.

Proof The correctness is a consequence of properties of derivations, see Lemmas
1 and 2. First, it is easy to observe that Algorithm 2 finishes after finitely many
steps. Moreover, each concept that is derivable in less than L steps is processed in
the first stage, each of them is processed exactly once. This follows from the fact
that ParallelGenerateFrom simulates GenerateFrom. If a concept is derivable
in > L steps, it will be computed by one of the independent processors. Indeed,
let (4) be the derivation of 〈A, B〉 where k + 1 > L. Then the (L − 1)th element
〈〈AL−1, BL−1〉, yL−1〉 of the derivation (4) will be put in one of the queues, say
queuer, in the second stage of the algorithm because 〈AL−1, BL−1〉 is derivable in
L steps. Therefore, 〈A, B〉 will be computed by the processor r. In addition to that,
〈A, B〉 will be computed exactly once on the account of Lemma 2. ��

Remark 5 Let us comment on the role of P and L which influence Algorithm 2.
Both the parameters have an impact on the distribution of computed formal concepts
among the processors. Note that the practical range of the parameter P is somewhat
limited by the hardware on which we run the algorithm (e.g., we are limited by
hardware processors or network nodes). On the other hand, L can be set to any
value ≥ 2. The performance of the algorithm in dependence of the value of L is
experimentally evaluated in Section 4. According to our observations, if L = 2, most
of the formal concepts are computed by one or two processors. With increasing L,
formal concepts are distributed to processors more equally. On the other hand, large
values of L tend to degenerate the parallel computation. For instance, if L ≥ |Y| + 1
then all concepts will be computed in the first (sequential) stage because the depth of
the call tree is at most |Y| + 1. From our experiments it seems that on average, a good
trade-off value is already L = 3 provided that |Y| is large. In such a case, almost all



268 P. Krajca et al.

formal concepts are computed in parallel and are distributed among the processors
nearly optimally.

Example 3 We illustrate the influence of P and L on how Algorithm 2 computes the
concepts. Consider a formal context 〈X, X, �=〉 where |X| = 5. The corresponding
B(X, X, �=) is isomorphic to the Boolean algebra 25. Figure 3 contains results for four
combinations of values of P and L. Each of the diagrams in Fig. 3 depicts the Hasse
diagram of the concept lattice where nodes denoted by black circles correspond to
concepts processed during the initial sequential stage. Nodes denoted by numbers are
processed by independent processors of the corresponding numbers. In case of P = 2
and L = 2, only the topmost concept is processed in the first stage. During the second
stage, three concepts are put in the queue of the first processor, the remaining two
concepts are put in the queue of the second processor. The total number of concepts
that are processed by the two processors are 21 and 10, respectively. If P = 2 and
L = 3 (second diagram), the concepts are distributed among the processors more
equally: 16 and 10. A similar situation applies for P = 3 where we have 18, 9, and 4
concepts processed by three processors in case of L = 2 and 11, 10, and 5 in case of
L = 3, see last two diagrams.

Remark 6 The parallel computation of Algorithm 2 can be degenerate, meaning that
in certain situations, only one of the P processors is computing all the remaining
concepts while other processors are idle. Such a situation occurs iff the Lth level
of the call tree contains at most one node 〈Ci, yi〉. In particular, the situation
occurs when B(X, Y, I) is isomorphic to an ordinal sum L1⊕ L2 of a lattice L1

and an n-element chain L2 where n equals L (the recursion level), see Fig. 4. Such
pathologic situations can be (partially) avoided by modifying the condition in line 1
of Algorithm 2 so that is checks whether at least a given number of queues are
nonempty. More details on the utilization of processors can be found in Section 4.

Let us conclude this section with bibliographical remarks on existing approaches
to parallel algorithms in FCA. For instance, [6] proposes a parallelization of Ganter’s
algorithm by decomposing the set of all concepts into non-overlapping subsets
which are computed simultaneously. Another parallelization of Ganter’s algorithm
is presented in [2]. The basic idea in [2] is that the lexicographically ordered power

Fig. 3 Examples of parallelization for various values of P and L
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Fig. 4 Ordinal sum L1⊕ L2 of
a lattice L1 and an n-element
chain L2

set 2Y is split into p intervals of the same length (p indicates a number of processes).
Then, each of the p intervals is executed by an independent process using a serial
version of Ganter’s algorithm. A different approach is shown, e.g., in [12] where
the algorithm is based on dividing the input data into disjoint fragments which are
then computed by independent processes. A detailed comparison of the algorithms
in terms of their efficiency and scalability is beyond the scope of this paper and will
be a subject of future investigation.

4 Efficiency and implementation issues

From the point of view of the worst-case complexity, PCbO is a polynomial time
delay [11] algorithm with asymptotic complexity O(|B|·|Y|2·|X|) because in the worst
case, PCbO can degenerate into the sequential CbO [14, 15]. The actual performance
compared to CbO is influenced by the number of processors P and their utilization.
In case of optimal utilization of processors, PCbO can run P times faster than CbO,
i.e. the reciprocal P−1 can be seen as a multiplicative constant of the running time
of CbO. In practice, the multiplicative constant is greater than P−1 because (i)
concepts are not distributed over the processors uniformly and (ii) the parallelization
has certain overhead. In order to show how PCbO behaves on average data, we
should provide theoretical and experimental average-case complexity analysis. The
theoretical analysis seems to be an interesting and challenging problem which is

Table 1 Performance for selected datasets (real time, in seconds; time in parentheses represents
total processor time used by all the processors together)

Dataset Mushroom Tic-tac-toe Debian tags Anon. web
Size 8,124 × 119 958 × 29 14,315 × 475 32,710 × 295
Density 19 % 34 % < 1 % 1 %

PCbO (P = 1) 4.89 0.06 7.79 40.32
PCbO (P = 2) 2.78 (5.16) 0.04 (0.07) 5.52 (9.34) 22.16 (43.33)
PCbO (P = 4) 1.90 (5.39) 0.03 (0.07) 3.65 (10.88) 13.38 (47.81)
PCbO (P = 8) 1.18 (5.58) 0.02 (0.07) 2.51 (11.08) 8.09 (46.68)
Ganter’s 834.40 2.15 1,720.82 10,039.73
Lindig’s 5,271.98 14.53 2,639.67 13,422.64
Berry’s 934.50 5.78 1,531.94 3,615.07
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Table 2 Utilization of processors (number of concepts processed by particular processors)

CPU #0 #1 #2 #3 #4 #5 #6

Mushroom (P = 2) 440 103,005 135,265
Mushroom (P = 4) 440 78,825 89,174 24,180 46,091
Mushroom (P = 6) 440 35,486 78,348 23,040 33,398 44,479 23,519
Tic-tac-toe (P = 2) 409 31,986 27,110
Tic-tac-toe (P = 4) 409 16,518 13,832 15,468 13,278
Tic-tac-toe (P = 6) 409 11,407 9,962 10,635 7,759 9,944 9,389

yet to be explored. In the sequel we present results of experiments with randomly
generated and real data sets which may give hint how PCbO behaves for different
values of P and L.

We first compare PCbO with other algorithms [16] for computing formal concepts.
Namely, we compare it with Ganter’s [7], Lindig’s [17] and Berry’s [4] algorithms (all
implemented in ANSI C). The comparison is made using datasets from [1, 10] and
a dataset generated from package descriptions in Debian GNU/Linux. The results,
along with the information on sizes and densities (percentage of 1s) of used data
sets, are depicted in Table 1. The first four rows contain running times of PCbO
that has been run on 1 (sequential version), 2, 4, and 8 hardware processors. The
measurements have been done on an otherwise idle 64-bit x86_64 hardware with 8
independent processors (2× Quad-Core Intel Xeon E5345, 2.33 GHz, 12 GB RAM).
For P > 1, the table in Table 1 contains total processor time used to compute all
formal concepts (the time written in parentheses). This time allows us to make
a rough estimate of the overhead that is needed to manage multiple threads of
computation: the overhead can be computed as the real processor time minus the
total processor time divided by P. As it is expected, larger values of P lead to a larger
overhead. The utilization of processors can be observed from the number of concepts
that are processed by each processor. For instance, Table 2 shows the distribution of
computed concepts among particular processors. The processor marked #0, is the
initial sequential stage of the algorithm. It should be mentioned that the number of
computed concepts by each processor is entirely given by parameters P, L, and by
the context. This means, if one processor completes its computation, it cannot “help”
other processors to process their load.

The next experiment focuses on the scalability of PCbO, i.e., the ability to decrease
the running time using multiple processors. For this set of experiments we have used

Fig. 5 Relative speedup in various data tables (on the left); relative speedup in contexts with various
counts of attributes (on the right)
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Fig. 6 Relative speedup dependent on density of 1’s (on the left); running time dependent on the
argument L (on the right)

computer equipped with eight core UltraSPARC T1 processor that is able to process
up to 32 simultaneously running threads. Fig. 5 (left) contains results for selected
datasets while Fig. 5 (right) contains results for randomly generated tables with
10,000 objects and 5 % density [16] of 1’s. By a relative speedup which is shown on the
y-axes in the graphs, we mean the theoretical speedup given by the number of hard-
ware processors (e.g., if we have 4 processors, the execution can be 4 times faster).
Therefore, the relative speedup is a ratio of running time using a single processor (the
sequential algorithm) and running time using multiple processors. Note that the the-
oretical maximum of the speedup is equal to P but the real speedup is always smaller
due to the overhead caused by managing of multiple threads (cf. also Table 1). The
experiment in Fig. 6 (left) shows results of the impact of the data density. That is, we
have generated data tables with various densities of 1’s and observed the impact on
the scalability. We have used data tables of size 5,000 × 100. Finally, Fig. 6 (right)
illustrates the influence of parameter L on various data tables and amounts of
processors. The experiments indicate that good choice is L ∈ {3, 4}, see Remark 5.

Let us note that the actual performance of an implementation of the algorithm
depends on used data structures. We have used boolean vectors as basic data
structures which turned out to be very efficient. The data structures and optimized
algorithms for computing closures are further discussed in Outrata and Vychodil
(submitted for publication).

5 Conclusions

We have introduced a parallel algorithm called PCbO for computing formal concepts
in object-attribute data tables. The parallel algorithm results as a parallelization of
CbO [14, 15] and is formalized by a recursive procedure which simulates the ordinary
CbO up to a point where it forks into multiple processes and each process computes
a disjoint set of formal concepts. The algorithm has minimal overhead because the
concurrent processes computing disjoint sets of concepts are fully independent. This
significantly improves efficiency of the algorithm. We have shown that the algorithm
is scalable. With growing numbers of CPUs, the speedup of the computation given
by increasing number of CPUs is near its theoretical limit. The implementation of
the algorithm can be downloaded from

http://fcalgs.sourceforge.net/pcbo-amai.html.

http://fcalgs.sourceforge.net/pcbo-amai.html
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The future research will focus on

– refinements of the algorithm including new approaches to reducing the number
of concepts which are computed multiple times, some advances towards this
direction can be found in Outrata and Vychodil (submitted for publication);

– comparison of various strategies for selecting queues and advanced conditions
preventing degenerate computation, see Remark 6;

– performance comparison with other parallel algorithms, performance and scal-
ability tests of various data structures for representing contexts, extents, and
intents;

– specialized variants of the algorithm focused to solve particular problems related
to FCA, e.g., factorization of binary matrices [3].
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