
Running Boolean Matrix Factorization in Parallel

Jan Outrata Martin Trnecka

Department of Computer Science
Palacký University Olomouc, Czech Republic

Email: jan.outrata@upol.cz, martin.trnecka@gmail.com

Abstract

Boolean matrix factorization (also known as Boolean
matrix decomposition) is a well established method
for analysis and preprocessing of data. There is a
number of various algorithms for Boolean matrix fac-
torization, but none of them uses benefits of paral-
lelization. This is mainly due to the fact that the
algorithms utilize greedy heuristics that are inher-
ently sequential. In this work, we propose a gen-
eral parallelization scheme—and an algorithm which
uses it—for Boolean matrix factorization. Our ap-
proach computes several possible locally most optimal
(from heuristic perspective) partial decompositions
and constructs several most optimal final decompo-
sitions in more processes running simultaneously in
parallel. As a result of the computation, either the
single most optimal decomposition or several top-k of
them can be returned. The approach could be ap-
plied to any sequential heuristic Boolean matrix fac-
torization algorithm. Moreover, we present results of
various experiments involving this new algorithm on
synthetic and real datasets.

Keywords: Boolean matrix decomposition; parallel
algorithm

1 Introduction

Boolean Matrix Factorization (BMF) is a problem
of decomposing a Boolean matrix into two Boolean
matrices such that the (Boolean) matrix product of
the two matrices exactly or approximately equals the
given matrix. In a variant of the problem called Ap-
proximate Factorization Problem (AFP) (Belohlavek
et al. 2010), a (non-trivial) solution with the inner
matrix product dimension as low as possible, for a
given maximal, usually zero, difference (error) of the
product from the input matrix, is requested. Another
variant, called Discrete Basis Problem (DBP) (Miet-
tinen et al. 2008), demands minimal error for a given
maximal inner dimension. We will focus on the AFP

The research was supported by grant No. GA15-17899S of
the Czech Science Foundation. M. Trnecka also acknowledges
partial support by grant No. PrF 2016 027 of IGA of Palacký
University Olomouc.

Copyright ©2016, Australian Computer Society, Inc. This
paper appeared at the Fourteenth Australasian Data Mining
Conference, Canberra, Australia. Conferences in Research and
Practice in Information Technology, Vol. 170. Yanchang Zhao,
Md Zahidul Islam, Glenn Stone, Kok-Leong Ong, Dharmendra
Sharma and Graham Williams (Eds.). Reproduction for aca-
demic, not-for profit purposes permitted provided this text is
included.

in this paper. The least dimension for which an ex-
act decomposition of a Boolean matrix exists is called
the Boolean rank (or Schein rank) of the matrix. As
the problem of finding the Boolean rank for a given
Boolean matrix as well as the AFP and the DBP
is NP-hard (due to the NP-hardness of the set ba-
sis problem (Stockmeyer 1975)), existing BMF algo-
rithms seek for a sub-optimal decomposition with the
dimension as close to the Boolean rank as possible,
utilizing some heuristic approach.

Well-recognized efficient algorithms are Gre-
ConD (Belohlavek et al. 2010) and GreEss (Be-
lohlavek et al. 2015), both designed for the AFP, and
Asso (Miettinen et al. 2008) for the DBP. Other com-
petitive algorithms for either AFP or DBP include
e.g. PaNDa (Lucchese et al. 2010) or Hyper (Xi-
ang et al. 2011). Being heuristic, the algorithms con-
struct the final decomposition from partial (approxi-
mate) decompositions which are only locally optimal
among all possible partial decompositions. The choice
of optimal partial decomposition is usually hardcoded
in the algorithm design and for performance reasons
one cannot afford in the algorithm to explore several
most optimal decompositions (or even all of them)
and then choose among them the most optimal one
discarding the others. This is true for sequential al-
gorithms, as all the above mentioned algorithms are
sequential, and this is where a parallel computation
approach could be used. Moreover, with the devel-
opment and growing affordability of multicore pro-
cessors and other hardware allowing parallel compu-
tations, interest in parallel computing increases and
parallel algorithms are preferred to better utilize the
hardware.

Interestingly, to our knowledge, there is no paral-
lel algorithm for Boolean matrix factorization today
introduced in the literature. The adjective ’Boolean’
needs to be emphasized here. There are parallel al-
gorithms for some of the many existing factorization
methods designed originally for real-valued matrices,
see for instance (Berry et al. 2006) or (Kannan et
al. 2016), and those algorithms obviously can be ap-
plied also to Boolean matrices (and they are, though).
However, as (Tatti et al. 2006) and other authors con-
clude, a problem with applying to Boolean matrices
the methods designed originally for real-valued ma-
trices is the lack of interpretability. And because
of interpretability, which is crucial from the knowl-
edge discovery point of view, BMF is considerably
more appropriate to use with Boolean matrices than
the methods designed originally for real-valued ma-
trices. One of the reasons for the absence of a par-
allel BMF algorithm, however, may be that the most
commonly used greedy heuristic approach, utilized in
GreConD, GreEss and also in Asso, is inherently
sequential. Other reason could be that factorization



of Boolean matrices is as a standalone research area
relatively young within the data mining research and
not so elaborated as the factorization of real-valued
matrices.

Our contribution in this paper does not lie in a par-
allel algorithm for BMF which would compute a de-
composition in a parallel manner either. Instead, we
show a general parallelization scheme consisting in a
viable way to compute in parallel several locally opti-
mal decompositions and then select the most optimal
one(s) hoping to find the globally optimal. In essence,
as suggested above, the approach consists in follow-
ing several possible choices of locally most optimal
partial decompositions in the heuristic approach and
construct several most optimal final decompositions
in more processes running simultaneously in parallel.
As a result of computation, either the single most op-
timal decomposition or several top-k of them can be
returned—a distinctive feature of our approach. The
approach could be applied, with more or less effort, to
any sequential heuristic BMF algorithm. We chose as
our base algorithm to demonstrate the approach the
GreConD algorithm, due to its relative simplicity
and high efficiency (for the AFP).

In the rest of the paper, the following Section 2
provides basic notions of Boolean matrix factoriza-
tion, the main Section 3 contains first a brief descrip-
tion of the base GreConD algorithm and then a pre-
sentation of our approach of computing several ma-
trix decompositions in parallel demonstrated on Gre-
ConD, including full pseudocodes of both original
GreConD and our modification of it, Section 4 then
presents results from basic experiments evaluating the
approach, and finally Section 5 concludes the paper.

2 Boolean Matrix Factorization

Boolean matrix factorization (BMF), called also
Boolean matrix decomposition, comprises various
methods for analysis and processing of Boolean data,
mostly for factorization or decomposition of the data.
The data is in the form of Boolean matrices, i.e. ma-
trices with entries either 1 or 0. We interpret such
matrices primarily as object-attribute incidence re-
lations, that is, the entry Iij of a Boolean matrix I
corresponding to the row i and the column j indicates
that the object i does (value 1) or does not have (value
0) the attribute j. The ith row and jth column vector
of I is denoted by Ii and I j , respectively. The set of
all n ×m Boolean matrices is denoted {0,1}n×m.

Generally speaking, the basic problem in BMF
is to find for a given Boolean matrix I ∈ {0,1}n×m

Boolean matrices A ∈ {0,1}n×k and B ∈ {0,1}k×m for
which

I (approximately) equals A ○B, (1)

where ○ is the Boolean matrix product, i.e.

(A ○B)ij =
k

max
l=1

min(Ail,Blj).

Interpreting the matrices A and B as object-factor
and factor-attribute incidence relations, respectively,
such a decomposition of I into A and B may be in-
terpreted as a discovery of k factors (k is the inner
dimension of the product) exactly or approximately
explaining I. In the factor model given by (1) matri-
ces A and B explain I as follows: the object i has the
attribute j (Iij = 1) if and only if there exists factor
l such that l applies to i (Ail = 1) and j is one of
the particular manifestations of l (Blj = 1). Thus, a
factor in the model is naturally interpreted as an ab-
stract property (or attribute), generally distinct from

the m original attributes, which applies to some of
the n objects and which is characterized by some of
the m original attributes.

This easy interpretation of factors is further sup-
ported by the so-called geometric view on factors and
on BMF, which is unfortunately not always recog-
nized in the literature. We will use the view in the de-
scription of the GreConD algorithm below. Briefly,
in the view each factor is identified with a rectangular
matrix, or rectangle for short, a Boolean matrix whose
entries with 1 form, upon a suitable permutation of
rows and columns, a rectangular area (full of 1s). A
decomposition of a Boolean matrix I using k factors
then corresponds to a coverage of the entries of I con-
taining 1s by k such rectangles (a Boolean matrix
product from (1) is looked at as a max-superposition
maxk

l=1(Jl)ij of rectangles Jl = A l ○Bl ).
In optimization versions of the basic BMF prob-

lem, the number k of factors is requested to be as
small as possible (see the AFP below) and, as already
mentioned in the beginning of the introduction sec-
tion, the least k for which an exact decomposition
I = A ○B exists is called the Boolean rank (or Schein
rank) of I. The deviation from an exact decomposi-
tion, i.e. the approximate equality in (1), is assessed
by means of the well-known L1-norm ∣∣I ∣∣ = ∑

m,n
i,j=1 ∣Iij ∣

and the difference of A ○B from I is measured by a
distance (error) function E(I,A ○B) defined as

E(I,A ○B) = ∣∣I −A ○B∣∣ =

m,n

∑
i,j=1

∣Iij − (A ○B)ij ∣.

Using E, quality of decompositions delivered by BMF
algorithms is commonly assessed (Belohlavek et al.
2010, 2015, Geerts et al. 2004, Miettinen et al. 2008)
by the following function representing the coverage
quality of the first l factors delivered by the partic-
ular algorithm and measuring how well the data is
explained by the l factors:

c(l) = 1 −E(I,A ○B)/∣∣I ∣∣.

We will use this function in Section 4 devoted to ex-
periments where we also state what c(l) should satisfy
for a good factorization algorithm.

A (optimization) variant of the basic BMF prob-
lem of our concern is the approximate factorization
problem (AFP):

Definition 1 (Approximate Factorization Problem,
AFP (Belohlavek et al. 2015)). Given I ∈ {0,1}n×m

and prescribed error ε ≥ 0, find A ∈ {0,1}n×k and
B ∈ {0,1}k×m with k as small as possible such that
∣∣I −A ○B∣∣ ≤ ε.

AFP emphasizes the need to account for (and
thus to explain) a prescribed (presumably reasonably
large) portion of data, which is specified by ε.

For a more throughout study of the factor model
and the geometric view on it described above, of the
AFP and of the BMF in general, we refer the reader
to (Belohlavek et al. 2010) or (Belohlavek et al. 2015).

3 BMF in Parallel Runs

In this section we present our approach of comput-
ing several Boolean matrix decompositions simulta-
neously in parallel. First, however, we need to recall
the GreConD algorithm which we use as a base for
our parallelization scheme.



3.1 GreConD Algorithm

The algorithm, proposed in (Belohlavek et al. 2010)
and called Algorithm 2 there, solves the AFP by im-
plementing greedy search for factors. I.e., each factor
is sought to explain as much of the input Boolean ma-
trix being decomposed as possible. The factors satis-
fying this property are, however, not selected among
all candidate factors (as in the “classical” greedy ap-
proach), rather they are incrementally, or “on de-
mand”, computed with the aim to fulfill the prop-
erty. And the computation is again in a greedy man-
ner, see the description below. In the description we
will use the geometric view on factors (as (Belohlavek
et al. 2010) does too), identifying each factor with a
rectangular matrix (rectangle) full of 1 as introduced
in Section 2. Finding a decomposition of the input
Boolean matrix I then means finding a coverage of 1s
in I by such rectangles. GreConD finds factors as
maximal rectangles. This is not accidental, maximal
rectangles make factors better interpretable. Infor-
mally, maximal rectangles are rectangles which can-
not be enlarged by adding another row or another col-
umn so that it remains a rectangle—hence factors, in
this sense, apply to a maximal number of objects and
are characterized by a maximal number of attributes.
This rationale actually stems Formal concept analy-
sis (FCA) (Ganter 1999) in which maximal rectangles
correspond to so-called formal concepts (basic data
units studied in FCA) and which is used as a descrip-
tion platform of the algorithm in (Belohlavek et al.
2010) (now, GreConD means “Greedy Concepts on
Demand”). We do not use FCA in this paper, readers
interested in (a fruitful) connection between BMF and
FCA are referred to (Belohlavek et al. 2010) or (Be-
lohlavek et al. 2015). We will briefly describe the
GreConD algorithm now.

The algorithm, in its seek for a factor, starts
with the empty set of attributes (characterized as the
empty Boolean vector of size m or the empty 1 ×m
Boolean matrix) which is repeatedly grown by a se-
lected attribute. Together with the selected attribute
other attributes may be possibly added to the set due
to the construction of each factor as a maximal rect-
angle. Namely, the set of attributes after each addi-
tion is completed, or closed, to contain all attributes
which are shared by all objects having the attributes.
Such a set of attributes is called closed. The closed
set of attributes together with the corresponding set
of all objects having all the attributes determine a
maximal rectangle. The selected attribute is such
that the rectangle grown by the attribute covers as
many still uncovered 1s in the input Boolean matrix
I as possible. Within the aim of computing factors as
rectangles which cover as many still uncovered 1s in
matrix I as possible, the rectangle is grown repeat-
edly as long as the number of still uncovered 1s in I
covered by the rectangle increases. The final maximal
rectangle then represents a computed factor. Note the
greedy and “on demand” computation of the factor.
Further factors as maximal rectangles are, within the
greedy factor search, sought the same way until the
prescribed number of 1s in I is covered by the rect-
angles (the prescribed maximal error E is reached,
recall that the algorithm is designed for the AFP). Fi-
nally, characteristic vectors of object sets determining
found maximal rectangles/factors constitute columns
of the object-factor matrix A and characteristic vec-
tors of attribute sets of the rectangles/factors consti-
tute rows of the factor-attribute matrix B. Matrices
A and B, which determine the decomposition of the
matrix I, form an output of the algorithm.

The above description results in a pseudocode of

Algorithm 1: Original GreConD algorithm

Input: A Boolean matrix I ∈ {0,1}n×m and a
prescribed error ε ≥ 0

Output: Boolean matrices A ∈ {0,1}n×k and
B ∈ {0,1}k×m

1 A← empty n × 0 Boolean matrix
2 B ← empty 0 ×m Boolean matrix
3 while ∣∣I −A ○B∣∣ > ε do
4 D ← empty 1 ×m Boolean matrix
5 V ← 0
6 while there is j such that Dj = 0 and

cover(D + [j], I,A,B) > V do
7 W ← 0
8 forall j do
9 if cover(D + [j], I,A,B) >W then

10 h← j
11 W ← cover(D + [j], I,A,B)

12 end
13 end
14 D ← (D + [h])↓↑

15 V ←W
16 end

17 A← [A D↓], B ← [
B
D]

18 end
19 return A and B

the algorithm depicted in Algorithm 1. D denotes
the set of attributes determining a maximal rect-
angle (after closing) and is repeatedly grown by a
selected attribute h between lines 4 and 16. Un-
der the vector/matrix notation we use in the pseu-
docode Dj denotes the jth item of D ∈ {0,1}1×m as
a Boolean vector which effectively corresponds to the
presence/absence of attribute j in D. The addition
of h and the closure of D with h added are performed
at line 14. Here, [h] ∈ {0,1}1×m denotes the Boolean
vector with hth item equal to 1 and all other items
equal to 0 (i.e. the set with attribute h only) and
the closure operator ↓↑ is a composition of the (so-
called formal concept-forming (Ganter 1999)) opera-
tors ↑ and ↓. The operators are defined for a (column)
Boolean vector C ∈ {0,1}n×1 and a (row) Boolean vec-
tor D, respectively, as

C↑ = +[j] ∈ {0,1}1×m ; Iij = 1 for all i s.t. Ci = 1,

D↓ = +[i] ∈ {0,1}n×1 ; Iij = 1 for all j s.t. Dj = 1.

Note the meaning of the operators (in the set nota-
tion): C↑ contains all attributes shared by all objects
in C and D↓ contains all objects having all attributes
in D. The selection of attribute h is done between
lines 7 and 13. The number of still uncovered 1s in
the input Boolean matrix I covered by the rectangle
determined by D, on which the selection is based, is
computed by a function cover(D,I,A,B) defined as

∣∣(D↓ ×D↓↑) ⋅ (I −A ○B)∣∣.

The × and ⋅ (dot) operations in the function definition
denote the usual Cartesian and scalar matrix prod-
ucts, respectively. By line 6, D is repeatedly grown
as long as the number computed by the function cover
increases. I is then covered by the final maximal rect-
angles determined by D after growing which represent
factors and the factors are “stored” in matrices A and



B at line 17. Finally, finding the factors until they
cover the prescribed number of 1s in I given by ε is
wrapped between lines 1 and 18.

We can now proceed to the description of our ap-
proach to running the algorithm in parallel.

3.2 Parallel Runs of GreConD

As we saw above the GreConD algorithm imple-
ments a greedy search for factors in which each fac-
tor is computed to explain as much of the input
Boolean matrix being decomposed as possible. While
the alone factor computed this way may be optimal
within the aim to explain by factors as much of the
input matrix as possible, several (or all) factors to-
gether, forming a (final) decomposition, may be not.
Hence, the partial decomposition formed by the fac-
tor and all factors computed previously is only locally
optimal. Moreover, there can be more equally opti-
mal factors instead of just one, forming more partial
decomposition to choose from and generally leading
to different final decompositions. Likely, the compu-
tation of a factor is also greedy, by growing a maximal
rectangle by attributes selected so that the rectangle
covers as many still uncovered 1s in the input matrix
as possible. Similarly, while the alone attribute se-
lected in such a way may be optimal within the aim
to cover by the (final) maximal rectangle after grow-
ing as many still uncovered 1s in the input matrix
as possible, more attributes together, determining a
factor, may be not. Hence, here the partial factor
(formed by the attribute and all attributes added to
the corresponding maximal rectangle previously) is
also only locally optimal. And finally, there can also
be more equally optimal attributes to select, forming
more partial factors to choose from and leading to
different factors.

In our approach to parallel runs of a BMF algo-
rithm, as aforementioned in the introduction section,
we construct, simultaneously in parallel, several (lo-
cally) most optimal partial decompositions and select
among them several most optimal final decomposi-
tions in hope to find the globally optimal one. For
the GreConD algorithm it means that in the search
for factors in each iteration several factors explaining
most of the input Boolean matrix being decomposed
are computed instead of just one, and in the factor
computation in each iteration several attributes are
selected so that the corresponding maximal rectangle
covers most still uncovered 1s in the input matrix,
instead of just one. Each of the factors computed,
together with the factors computed previously, forms
a (locally optimal) partial decomposition and each of
the attributes (possibly with other attributes due to
the closure), together with the attributes selected pre-
viously, forms a (locally optimal) partial factor. After
each iteration, several most optimal partial decompo-
sitions or factors are selected for the next iteration.
And while the computation of factors from the se-
lected partial factors remains serial, the construction
of the final decompositions from the selected partial
ones is done in parallel.

In terms of a pseudocode the idea is included in
the algorithm depicted in Algorithms 2 and 3. Algo-
rithm 2 depicts an algorithm which, loosely speaking,
represents several instances of the (modified) Gre-
ConD algorithm from Algorithm 1 where each in-
stance is represented by the procedure depicted in Al-
gorithm 3. All instances are running simultaneously
in parallel—hence the name GreConDP as “Gre-
ConD in Parallel runs”—and jointly construct several
most optimal decompositions of input Boolean ma-
trix I. The number of instances equal to the number

Algorithm 2: GreConDP – GreConD in par-
allel runs

Input: A Boolean matrix I ∈ {0,1}n×m and a
prescribed error ε ≥ 0

Output: Boolean matrices A1 ∈ {0,1}n×k and
B1 ∈ {0,1}k×m

Uses: Boolean matrices Ar ∈ {0,1}n×k and
Br ∈ {0,1}k×m, values Ur, r ∈ {1, . . . , P},
and a number P ≥ 1 of processes

1 Ar ← empty n × 0 Boolean matrix
2 Br ← empty 0 ×m Boolean matrix
3 Ur ← 0 (r ∈ {1, . . . , P})

4 GreConDP-i(I, ε,A1,B1, true)
5 for r = 1, . . . , P do
6 with process r
7 GreConDP-i(I, ε,Ar,Br, false)
8 end
9 end

10 wait for all processes
11 return A1 and B1

of decompositions is given by (presently equal to) the
number P of processes in which the instances are run,
see lines 5 to 9 of Algorithm 2. The decompositions
of matrix I are determined by Boolean matrices Ar
and Br, r ∈ {1, . . . , P}, sorted in the descending or-
der from the most optimal one (by increasing r). The
first one only, i.e. the most optimal one, determined
by A1 and B1, is output.

Let us now focus on Algorithm 3 depicting the core
of the modified GreConD algorithm and compare it
to the original version of GreConD depicted in Al-
gorithm 1. The procedure GreConDP-i constructs
the ith decomposition (ith in the time of calling from
Algorithm 2, the order of decompositions may change,
see below) determined by matrices Ai and Bi. Sev-
eral, actually P , sets of attributes determining P
maximal rectangles (after closing) representing par-
tial factors are denoted by Dr. By lines 4 and 5, all
those sets are repeatedly (and serially) grown by sev-
eral selected attributes between lines 2 and 33. Just in
the first iteration of growing, when all Drs are empty
Boolean matrices, only D1 is grown, see line 30. The
selection of the attributes for a particular Dr is done
between lines 6 and 18. Compare it to lines 7 to 13
in Algorithm 1. Instead of just one attribute h, P
attributes hs such that the maximal rectangle deter-
mined by Dr with hs added covers most still uncov-
ered 1s in the input matrix I are selected and the
attributes are, as a bonus here, sorted (by increas-
ing s, using the Insertsort sorting algorithm) in the
descending order from the greatest number of 1s cov-
ered by the rectangle (computed by function cover).
In addition, we need to check that the rectangles are
distinct, at line 10 (adding different attributes to the
same maximal rectangle can result in the same max-
imal rectangle).

Among all the sets grown from a Dr by all P se-
lected attributes hp, P of the sets only determining
maximal rectangles which cover most still uncovered
1s in I, over all Drs, are stored as Es, between lines 19
and 29 (extending lines 14 and 15 in Algorithm 1).
The sets Es are sorted (by increasing s) in the de-
scending order from the greatest number of 1s cov-
ered by the rectangle and here the sorting helps to
choose the P sets. After an iteration of growing of
all Drs each Es is renamed to Ds for another itera-
tion of growing, line 32. When the repeated growing
is finished (when the number computed by the func-



Algorithm 3: Procedure GreConDP-i

Input: A Boolean matrix I ∈ {0,1}n×m, a
prescribed error ε ≥ 0, Boolean matrices
Ai ∈ {0,1}n×k and Bi ∈ {0,1}k×m and a
Boolean flag first

Uses: Boolean matrices Ar ∈ {0,1}n×k and
Br ∈ {0,1}k×m, values Ur, r ∈ {1, . . . , P},
and a number P ≥ 1 of processes

1 while ∣∣I −Ai ○Bi∣∣ > ε do
2 Dr ← empty 1 ×m Boolean matrix
3 Vr ← 0 (r ∈ {1, . . . , P})

4 while there is ⟨r, j⟩ such that (Dr)j = 0 and
cover(Dr + [j], I,Ai,Bi) > Vr do

5 forall r from the ⟨r, j⟩ do
6 Ws ← 0 (s ∈ {1, . . . , P})

7 forall j from the ⟨r, j⟩ do
8 s← P
9 while s > 0 and

cover(Dr + [j], I,Ai,Bi) >Ws
do

10 if s > 1 and
(Dr + [j])↓↑ = (Dr + [hs−1])

↓↑

then break
11 if s < P then
12 hs+1 ← hs, Ws+1 ←Ws
13 end
14 hs ← j
15 Ws ← cover(Dr+[j], I,Ai,Bi)
16 s← s − 1
17 end
18 end
19 for p = 1, . . . , P do
20 s← P
21 while s > 0 and Wp > Vs do
22 if s < P then
23 Es+1 ← Es, Vs+1 ← Vs
24 end
25 Es ← (Dr + [hp])

↓↑

26 Vs ←Wp
27 s← s − 1
28 end
29 end
30 if D1 = empty 1 ×m Boolean matrix

then break
31 end
32 for r = 1, . . . , P do Dr ← Er

33 end
34 Ui ← 0
35 synchronization barrier
36 for r = 1, . . . , P do
37 s← P
38 begin critical section
39 while s > 0 and Vr > Us do
40 if s < P then
41 As+1 ← As, Bs+1 ← Bs
42 Us+1 ← Us

43 end

44 As ← [Ai D
↓
r], Bs ← [

Bi
Dr

]

45 Us ← Vr
46 s← s − 1
47 end
48 end
49 end
50 synchronization barrier
51 if first = true then break
52 end

tion cover at line 4 does not increase) we have P final
maximal rectangles (determined by Dr) representing
factors which have to be “stored” in matrices Ai and
Bi.

This is done between lines 34 and 50, over all the
P decompositions (determined by Ais and Bis) con-
structed in the P processes running the procedure
GreConDP-i in parallel. Therefore, due to data con-
sistency reasons when storing the factors, we need to
wait until all processes compute the factors and be-
fore they start to compute further factors. Hence the
synchronization barriers at lines 35 and 50. Among
all the factors computed by the processes, P of the
factors only which explain most of the input Boolean
matrix I are stored in matrices Ai and Bi (line 44)
and the matrices are sorted (by increasing s) in the
descending order from the greatest number of 1s cov-
ered by their factors. Again, due to the data consis-
tency reasons, the storing of factors and sorting need
to be done in a critical section, i.e. with inter-process
switching disabled between lines 38 and 48. Note also
that due to the sorting of matrices Ai and Bi deter-
mining the ith decomposition, the order of decompo-
sitions may change. But each process constructs still
the same decomposition (ith in the time of calling the
procedure GreConDP-i in Algorithm 2), until the
prescribed number of 1s in I given by ε is covered.

The last comment is on line 51 of Algorithm 3
and line 4 of Algorithm 2. Since calling the proce-
dure GreConDP-i in Algorithm 2 with the empty
decomposition as input in P processes does not make
sense (because all would compute the same P factors
from which the same first one explaining most of the
input Boolean matrix would just be stored to P copies
the same decomposition), we first call the procedure
once to construct the first P non-empty decomposi-
tions (in the first iteration) only and after that we
can continue the construction of the decompositions
in the P processes.

4 Experimental Evaluation

Now we provide an experimental evaluation of the
GreConDP algorithm described in the previous sec-
tion and present a comparison with the base algo-
rithm GreConD. We do not include a comparison
with other algorithms and approaches to the general
BMF. A comparison of GreConD with other BMF
algorithms can be found e.g. in (Belohlavek et al.
2015).

4.1 Datasets

As in the typical experiment scenario, which occurs in
various BMF papers, we use both synthetic and real
datasets which are described below. Experiments on
synthetic datasets enable us to analyze performance
of the algorithms on data with the same and known
characteristics—we can analyze results in the average
case. On the other hand such data are fully artificial
while real data are influenced by real factors.

4.1.1 Synthetic Data

We created 1000 of randomly generated datasets.
Every dataset Xi has 500 rows (objects) and 250
columns (attributes) and was obtained as a Boolean
product Xi = Ai ○Bi of Boolean matrices Ai and Bi
that were both generated randomly. Final densities
(the ratio of 1s in the Boolean matrix) of datasets
are 0.05, 0.1, 0.15, 0.2 and 0.3 and there is the same



number of datasets with each density. The inner di-
mension of matrices Ai and Bi in the Boolean matrix
product was set to 40 for all datasets, i.e. the ex-
pected number of factors is 40 (but the Boolean rank
can be lower). Data generated in this way are stan-
dard for evaluation of BMF algorithms (Belohlavek
et al. 2015, Miettinen et al. 2008).

4.1.2 Real Data

We used the datasets Emea (Ene et al. 2008),
DBLP (Miettinen et al. 2008), Firewall 1 (Ene et al.
2008), Mushroom (Bache at al. 2013), Paleo1 and
Zoo (Bache at al. 2013), see Table 1. All of them are
well known and used in the literature on BMF. The
characteristics of the datasets in the table are number
of objects × number of attributes (column Size), ratio
of 1s in the dataset Boolean matrix (Dens. 1) and the
average number of equally locally optimal factors per
factor in the GreConD algorithm (column Equal).

Dataset Size Dens. 1 Equal
Emea 3046×35 0.095 157.279
DBLP 19×6980 0.130 2.105
Firewall 1 365×709 0.124 31.168
Mushroom 8124×119 0.193 3.148
Paleo 501×139 0.051 5.868
Zoo 101×28 0.305 5.867

Table 1: Real datasets and their characteristics

The last characteristics is an important one. Re-
calling Section 3.2, factors computed by GreConD
(and other heuristic BMF algorithms) are alone lo-
cally optimal within the aim to explain by factors as
much of the input Boolean matrix being decomposed
as possible. For a partial decomposition formed by
a factor and all factors computed previously there
can, however, be more than one equally optimal fac-
tors to add to the decomposition, generally leading
to different final decompositions. Classical sequential
heuristic BMF algorithms like GreConD then have
to select one and this selection is algorithm or im-
plementation dependent. This problem is reduced in
our parallelization scheme—instead of selecting one of
the equally optimal factors several (or potentially all)
of them producing most optimal decompositions are
considered. And since the choice of equally optimal
factors influences results obtained by the evaluated
algorithms, as we will see below, the last column in
Table 1 includes the total number of the equally opti-
mal factors computed during the whole computation
divided by the final number of factors delivered by
the GreConD algorithm. Let us also note that this
characteristics is not mentioned in any previous work.

4.2 Quality of Decomposition

We provide results on the most important aspect of
evaluation of the performance of BMF algorithms—
the quality of decomposition delivered by an algo-
rithm (recall Section 2). As common in the litera-
ture on BMF, we evaluate the obtained results from
the viewpoints of the two main BMF optimization
problems: DBP (Discrete Basis Problem) and AFP
(Approximate Factorization Problem), cf. the intro-
duction section and Section 2.

DBP emphasizes the importance of the first few
(presumably most important) factors. In this per-
spective, the quality of factors obtained by a BMF

1NOW public release 030717, available from
http://www.helsinki.fi/science/now/

algorithm may be assessed by observing the values of
coverage c for small numbers of factors.

AFP emphasizes the need to account for (and
thus to explain) a prescribed (presumably reasonably
large) portion of data. In this perspective, the qual-
ity of factors obtained by a BMF algorithm may be
assessed by observing the numbers of factors needed
to attain a prescribed coverage c.

4.2.1 Comparsion with GreConD Algorithm

We observe the values of c(l) (see Section2) for l =
0 . . . k, where k is the number of factors delivered by
a particular algorithm. Clearly, for l = 0 (no factors,
A and B are “empty”) we have c(l) = 0. In accor-
dance with general requirements on BMF, for a good
factorization algorithm c(l) should be increasing in
l, should have relatively large values for small l (i.e.
should be steeply increasing in the beginning), and it
is desirable that for l = k we have I = A ○B, i.e. the
data is fully explained by all k computed factors (in
which case c(l) = 1).

The values of c(l) (average over 1000 iterations)
for synthetic data are shown in Figures 1, 2 and 3.
In case of the GreConDP algorithm we present the
values for the best factorization. We study similarities
of particular factorizations delivered by GreConDP
later in Section 4.3.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k (number of factors)

c
o
v
e
ra

g
e

 

 

GreConD

GreConDP

Figure 1: Comparison of GreConDP with Gre-
ConD on synthetic data, P = 4

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k (number of factors)

c
o
v
e
ra

g
e

 

 

GreConD

GreConDP

Figure 2: Comparison of GreConDP with Gre-
ConD on synthetic data, P = 8



0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k (number of factors)

c
o
v
e

ra
g
e

 

 

GreConD

PGreConD

Figure 3: Comparison of GreConDP with Gre-
ConD on synthetic data, P = 16

We can see that GreConDP considerably outper-
forms original GreConD algorithm, especially from
the AFP point of view and slightly from the DBP
point of view. Namely, the coverage values are higher
for a given number of factors and the difference grows
with the number of factors. Eventually, a full cov-
erage of input data is obtained with less factors –
let us note that the number of factors delivered by
GreConDP is in most cases equal to the expected
number of factors (40, see Section 4.1.1) and, more-
over, the factors are the original factors used to gen-
erate the data. For small numbers of factors (values
of k < 10), however, the difference between the two al-
gorithms is slight. On the other hand, for increasing
number P of processes this difference slowly increases
(for P = 1, GreConDP produces the same results as
GreConD).

For real datasets we obtain similar results, see
Figures 4, 5, 6, 7 and 8. GreConDP outperforms
GreConD on Mushroom, Paleo and Zoo datasets.
Here, however, full coverage of data is obtained from
both algorithms with the same number of factors but
GreConDP gives higher coverage values for small
values of k. In particular, this is quite notable on
the Mushroom dataset, see the Figure 6. On Emea,
GreConDP produces better results than GreConD
from the DBP point of view but from the AFP point
of view it is outperformed by GreConD. This is due
to the fact that the average number of equally locally
optimal factors per factor (see above) for this dataset
is extremely high and the advantage of GreConDP
over GreConD in utilizing more (but few compared
to the number) of the equally optimal factors rather
than just one vanishes. We also observed a similar be-
havior on Firewall 1 dataset. On the DBLP dataset,
GreConDP produces exactly the same decomposi-
tions as GreConD so we do not include a graph for
it. Let us also note that for this dataset we know the
Boolean rank (19) and decompositions produced by
both algorithms are optimal.

4.3 Similarity of Factorizations

As we saw in Section 3.2, the GreConDP algorithm
produces P most optimal factorizations of the given
input Boolean matrix (instead of just one) where P
is the number of processes. Hence a natural question
arises: How much are those factorizations similar to
each other? For P = 8, we obtained for all datasets
from Table 1 similar results like those shown in Ta-
ble 2. The numbers in the table refer to the degree

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k (number of factors)

c
o
v
e

ra
g
e

 

 

 

 

GreConD

GreConDP

Figure 4: Comparison of GreConDP with Gre-
ConD on Emea dataset, P = 4

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k (number of factors)

c
o
v
e
ra

g
e

 

 

 

 

GreConD

GreConDP

Figure 5: Comparison of GreConDP with Gre-
ConD on Firewall 1 dataset, P = 4

of similarity of two factorizations defined as follows:
factorization Fi in a row of the table and factoriza-
tion Fj in a column of the table are similar to degree
p ∈ [0,1] if p⋅100 percent of factors of Fi is also present
(as the same factors) in Fj . Note that in this simple
and easily interpretable (in general non-symmetric)
similarity measure we do not consider indices of fac-
tors in the factorizations (i.e., in particular, if one of
the factorizations is a permutation of the other one
these are measured as equal).

We can see that the factorizations obtained by
GreConDP are rather similar to each other (espe-
cially the best ones, denoted by Fi with index i close
to 1). This is not surprising since the factor search
strategy in the GreConD algorithm, which is in-
cluded also in GreConDP, has its limits.

Moreover, in Figure 9 we can see the progress of
the similarities of factorizations F1, F4 and F7 of the
Mushroom dataset for the number of the first factors
going from 1 to 30. As we can see, the GreConDP
algorithm starts with different factors (the factoriza-
tions are not similar at all) and with more factors the
factorizations become more similar. That means that
the algorithm finds the same factorizations in differ-
ent ways. Similar results were obtained also for the
others factorizations.



F1 F2 F3 F4 F5 F6 F7 F8

F1 1.000 0.991 0.991 0.991 0.983 0.983 0.991 0.983
F2 0.991 1.000 0.991 0.983 0.991 0.983 0.983 0.991
F3 0.991 0.991 1.000 0.983 0.983 0.991 0.983 0.983
F4 0.991 0.983 0.983 1.000 0.991 0.991 0.991 0.983
F5 0.983 0.991 0.983 0.991 1.000 0.991 0.983 0.991
F6 0.983 0.983 0.991 0.991 0.991 1.000 0.983 0.983
F7 0.991 0.983 0.983 0.991 0.983 0.983 1.000 0.991
F8 0.983 0.991 0.983 0.983 0.991 0.983 0.991 1.000

Table 2: Similarity of the first eight factorizations of Mushroom dataset

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k (number of factors)

c
o
v
e
ra

g
e

 

 

 

 

GreConD

GreConDP

Figure 6: Comparison of GreConDP with Gre-
ConD on Mushroom dataset, P = 4

4.4 Running Time

Usually, (theoretical asymptotic) time complexity of
a BMF algorithm is not a primary concern in the
BMF community, see e.g. (Belohlavek et al. 2015).
Nevertheless, below we provide brief remarks on the
observed running time of the GreConDP algorithm
compared to the GreConD algorithm.

We implemented both GreConD and Gre-
ConDP in MATLAB. Critical parts (computing the
operators ↑ and ↓, recall Section 3.1) were written in C
and compiled to binary MEX files. For parallelization
we used the Parallel Computing Toolbox MATLAB
package. None of the algorithms was optimized for
speed.

Despite that, each of the evaluated datasets (Ta-
ble 1) was factorized by both algorithms, on an ordi-
nary PC, in order of minutes2. The slowdown of Gre-
ConDP to GreConD depends on the number of pro-
cesses run in GreConDP vs. the number of proces-
sor units. If we use less processes than we have proces-
sor units, GreConDP is only a slightly slower than
GreConD, mainly due to the parallelization over-
head (synchronization barriers and the critical sec-
tion). If we use p times more processes than we have
processor units, our observation is that GreConDP
is approximately p/2 slower than GreConD.

5 Conclusions

In the paper we presented a general parallelization
scheme for Boolean matrix factorization algorithms
and also a new algorithm, called GreConDP, uti-
lizing this scheme. The algorithm is based on one

2An implementation of GreConD in C optimized for speed fac-
torizes the datasets on an ordinary PC in order of seconds, see
e.g. (Belohlavek et al. 2010).

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k (number of factors)

c
o
v
e
ra

g
e

 

 

 

 

GreConD

GreConDP

Figure 7: Comparison of GreConDP with Gre-
ConD on Paleo dataset, P = 4

of the well established algorithms for Boolean matrix
decomposition, the GreConD algorithm (Belohlavek
et al. 2010). We chose GreConD as our base algo-
rithm due to its relative simplicity and high efficiency
but the proposed parallelization scheme can be ap-
plied to arbitrary sequential heuristic algorithm for
Boolean matrix decomposition.

We evaluated properties and results delivered by
GreConDP in various experiments involving syn-
thetic (randomly generated) and real datasets. From
presented results we can see that the algorithm out-
performs in most cases the base algorithm, Gre-
ConD, most importantnly from the quality of de-
composition standpoint, at almost none or moder-
ate computing time expenses (depending the number
of parallel runs/processes vs. the number of avail-
able processor units)—which were the objectives of
our parallelization scheme. Namely, for the synthetic
data, coverage produced by GreConDP is higher
than coverage produced by GreConD for the same
number of factors and in the end the data is fully
explained by considerably less number of factors; for
the real datasets, at least for those we used, the data
is, however, fully explained by the same number of
factors (and the final decompositions are very simi-
lar) but GreConDP produces higher coverage than
GreConD for small numbers of factors in the be-
ginnings of decomposition computation, provided the
numbers of equally locally optimal factors in par-
tial decomposition constructions are not very high
(not significantly higher than the number of paral-
lel runs)—only then the utilization of more equally
optimal factors is beneficial. Moreover, as expected
and intended, GreConDP tends to produce better
results than GreConD with the increasing number of
parallel runs. What was also expected, and has been
observed, is that although producing rather similar



0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k (number of factors)

c
o
v
e

ra
g
e

 

 

 

 

GreConD

GreConDP

Figure 8: Comparison of GreConDP with Gre-
ConD on Zoo dataset, P = 4

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k (number of factors)

s
im

ila
ri
ty

 

 

Similarity of F
1
 and F

4

Similarity of F
1
 and F

7

Similarity of F
4
 and F

7

Figure 9: Progress of similarities of factorizations of
Mushroom dataset for the first 30 factors

final decompositions (especially the best ones), the
algorithm starts with different factors in the decom-
positions, i.e. the similar final decompositions are
constructed in different ways.

The observed results encourage us to the follow-
ing future research directions. First, apply the pro-
posed general parallelization scheme to other BMF
algorithms, especially to GreEss (Belohlavek et al.
2015) and Asso (Miettinen et al. 2008) which both
involve a similar heuristic strategy like GreConD
but in a different manner. Second, study the proper-
ties of the equally locally optimal factors—the prob-
lem which every heuristic algorithm faces—in order
to find further ways leading to better factorizations.

References

Bache, K., Lichman, M. (2013), http://archive.
ics.uci.edu/ml, University of California, School
of Information and Computer Science, Irvine, CA.

Belohlavek, R. & Vychodil, V. (2010), Discovery of
optimal factors in binary data via a novel method
of matrix decomposition, Journal of Computer and
System Sciences 76(1), 3–20.

Belohlavek, R. & Trnecka, M. (2015), From-Below
Approximations in Boolean Matrix Factorization:

Geometry and New Algorithm, Journal of Com-
puter and System Sciences 81(8), pp 1678–1697.

Berry, M. W., Mezher, D., Philippe, B. & Sameh, A.
(2006), Parallel Algorithms for the Singular
Value Decomposition, in Kontoghiorghes, E. (ed.):
‘Handbook on Parallel Computing and Statistics’,
Stat. Textb. Monogr., 184, Chapman & Hall/CRC,
pp. 117–164.

Ene, A., Horne, W., Milosavljevic, N., Rao. P,
Schreiber, R. & Tarjan, E. R. (2008), Fast exact
and heuristic methods for role minimization prob-
lems, in ‘ACM SACMAT Proceedings of the 13th
ACM Symposium on Access Control Models and
Technologies’, pp. 1–10.

Ganter, B. & Wille, R. (1999), Formal Concept Anal-
ysis: Mathematical Foundations, Springer.

Geerts, F., Goethals, B., & Mielikäinen, T. (2004),
Tiling databases, in ‘Proc. Discovery Science‘,
pp. 278–289.

Kannan, R., Ballard, G. & Park, H. (2016), A high-
performance parallel algorithm for nonnegative ma-
trix factorization, in ‘Proc. 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP’16)’.

Lucchese, L., Orlando, S., & Perego, R. (2010), Min-
ing Top-K Patterns from Binary Datasets in pres-
ence of Noise, in ‘SIAM ICDM International Con-
ference on Data Mining’, pp. 165–176.

Miettinen, P., Mielikinen, T., Gionis, A., Das, G. &
Mannila, H. (2008), The Discrete Basis Problem,
IEEE Transactions on Knowledge and Data Engi-
neering 20(10), pp 1348–1362.

Stockmeyer, L. (1975), The set basis problem is
NP-complete, Tech. Rep. RC5431, IBM, Yorktown
Heights, NY, USA.

Tatti, N., Mielikainen, T., Gionis, A. & Mannila,
H. (2006), What is the Dimension of Your Binary
Data?, in ‘IEEE ICDM International Conference
on Data Mining’, pp. 603–612.

Xiang, Y., Jin, R., Fuhry, D. & Dragan, F. F. (2011),
Summarizing transactional databases with over-
lapped hyperrectangles, Data Mining and Knowl-
edge Discovery 23(2), 215–251.


