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Fixpoints of Galois connections induced by object-attribute data tables represent impor-
tant patterns that can be found in relational data. Such patterns are used in several data
mining disciplines including formal concept analysis, frequent itemset and association rule
mining, and Boolean factor analysis. In this paper we propose efficient algorithm for listing
all fixpoints of Galois connections induced by object-attribute data. The algorithm, called
FCbO, results as a modification of Kuznetsov’s CbO in which we use more efficient canon-
icity test. We describe the algorithm, prove its correctness, discuss efficiency issues, and
present an experimental evaluation of its performance and comparison with other
algorithms.
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1. Introduction and Preliminaries

This paper describes a new algorithm for computing fixpoints of Galois connections. In particular, we focus on Galois con-
nections [5,12,26,33] that appear in formal concept analysis (FCA) – a method of qualitative analysis of object-attribute rela-
tional data [10,33]. In a broader sense, the algorithm belongs to an important family of algorithms for listing combinatorial
structures [11] and algorithms for biclustering [3,29]. The algorithm we propose is a refinement of Kuznetsov’s [19,21] Close-
by-One algorithm (CbO) in which we improve the canonicity test. The improvement significantly reduces the number of fix-
points which are computed multiple times, resulting in an algorithm that is considerably faster than the original CbO.

Recall that an antitone Galois connection between nonempty sets X and Y is a pair hf,gi of maps f : 2X ? 2Y and g : 2Y ? 2X

satisfying, for any A, A1, A2 # X and B, B1, B2 # Y,
A # gðf ðAÞÞ; ð1Þ
B # f ðgðBÞÞ; ð2Þ
if A1 # A2 then f ðA2Þ# f ðA1Þ; ð3Þ
if B1 # B2 then gðB2Þ# gðB1Þ: ð4Þ
The composed maps f � g : 2X ! 2X and g � f : 2Y ? 2Y are closure operators in 2X and 2Y, respectively [10,12]. A pair
hA,Bi 2 2X � 2Y is called a fixpoint of hf,gi if f(A) = B and g(B) = A. Since we are interested in listing all fixed points of hf,gi,
we restrict ourselves to finite X and Y.

Galois connections appear as induced structures in data analysis. Namely, suppose that X and Y are sets of objects and
attributes/features, respectively, and let I # X � Y be an incidence relation, hx,yi 2 I saying that object x 2 X has attribute
. All rights reserved.
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y 2 Y. In FCA, the triplet hX,Y, Ii is called a formal context and represents the input object-attribute data. Given I # X � Y, we
introduce two concept-forming operators [10] "I : 2X ! 2Y and #I : 2Y ! 2X defined, for each A # X and B # Y, by
A"I ¼ y 2 Yj for each x 2 A : hx; yi 2 If g; ð5Þ
B#I ¼ x 2 Xj for each y 2 B : hx; yi 2 If g: ð6Þ
By definition (5), A"I is the set of all attributes shared by all objects from A and, by (6), B#I is the set of all objects sharing all
attributes from B. It is easily seen that h"I ; #I i is a Galois connection between X and Y and it shall be called a Galois connection
induced by I. The fixpoints of h"I ; #I i are called formal concepts in I [10,12]. Formal concepts represent basic patterns that can
be found in I and that have two common interpretations: (i) a geometric one: formal concepts are maximal rectangular sub-
sets of I; (ii) a conceptual one: each formal concept hA,Bi represents a concept in data with an extent A (objects that fall under
the concept) and an intent B (attributes covered by the concept) such that A is a set of objects sharing all attributes from B
and B is the set of all attributes shared by all objects from A. The latter interpretation of concepts is inspired by a traditional
understanding of concepts as notions having their extent and intent which goes back to traditional Port-Royal logic [8,23].

In this paper, we propose an algorithm that lists all formal concepts in I, each of them exactly once. In the past, there have
been proposed various algorithms for solving this task, see [22] for a survey and comparison. One of the main issues solved
by all the algorithms is how to prevent listing the same formal concept multiple times. There are several approaches to cope
with the problem. For instance, Lindig’s algorithm [24] stores found concepts in a data structure (a particular search tree) and
uses the data structure to check whether a formal concept has already been found. On the other hand, Ganter’s NextClosure
[9], CbO [19,21], and the algorithm proposed by Norris [30] use canonicity tests: formal concepts are supposed to be listed in
certain order. The fact whether two consecutive concepts are listed in the order is ensured by a canonicity test. If a newly
computed formal concept does not pass the canonicity test, it is not further considered. Hence, the canonicity test ensures
that even if a formal concept is computed several times, it is listed exactly once. Conceptually, our algorithm can be seen as
an improved version of CbO [19,21] in which we modify the canonicity test. The improvement significantly reduces the num-
ber of formal concepts which are computed multiple times. The reduction has a great impact on the performance of the algo-
rithm because computing formal concepts using the closures A"I#I or B#I"I of a set of objects A or a set of attributes B,
respectively, is the most critical operation. Note that other promising approaches related to CbO have been introduced in
[27] and recently in [2].

Let us stress the importance of listing formal concepts. First, formal concepts are the basic output of formal concept anal-
ysis. If we denote by BðX;Y ; IÞ the set of all formal concepts in I # X � Y, we can define a partial order 6 on BðX;Y ; IÞ as
follows:
hA1;B1i 6 hA2;B2i iff A1 # A2 ðor; equivalently; iff B2 # B1Þ: ð7Þ
If hA1,B1i 6 hA2,B2i then hA1,B1i is called a subconcept of hA2,B2i. The set BðX;Y ; IÞ together with 6is called a concept lattice
[33]. A concept lattice is a complete lattice whose structure is described by the Basic Theorem of Concept Lattices [10]. The
concept lattice is a formalization of a hierarchy of concepts that are found in the input data represented by I. FCA has been
applied in many disciplines to analyze object-attribute data including program analysis and software engineering [31,32]
and evaluation of questionnaires [6]. Another source of applications of formal concepts comes from data mining. The task
of listing all formal concepts is closely related to mining of association rules [1]. Namely, the frequent closed itemsets which
appear in mining nonredundant association rules [1,25,34] can be identified with intents of formal concepts whose extents
are sufficiently large. Recently, it has been shown in [7] that formal concepts can be used to find optimal factorization of
Boolean matrices. In fact, formal concepts correspond with optimal solutions to the discrete basis problem discussed by
Miettinen et al. [28]. Finding formal concepts is therefore an important task. The algorithm we propose in this paper behaves
well on both sparse and dense incidence data (of reasonable size).

This paper is organized as follows. In Section 2 we recall CbO and introduce the canonicity test. Section 3 describes the
new algorithm, shows its correctness, and comments on the relationship to other algorithms. In Section 4 we discuss com-
plexity and efficiency issues, and present an experimental evaluation of the performance of the algorithm.

2. Canonicity test and CbO

In this section we recall CbO [19,21] and the canonicity test. The next section will describe the new algorithm. In the se-
quel, we assume that X = {0,1, . . . ,m} and Y = {0,1, . . . ,n} are finite nonempty sets of objects and attributes, respectively, and
I # X � Y. Since I is fixed, the concept-forming operators "I and #I defined by (5) and (6) will be denoted just by " and ;,
respectively. The set of all formal concept in I will be denoted by BðX;Y ; IÞ.

CbO has been introduced in [19] (a paper in Russian) and later used and described in [21]. The algorithm is also related to
the algorithm proposed by Norris [30] which can be seen as an incremental variant of CbO. CbO lists all formal concepts by a
systematic search in the space of all formal concepts, avoiding to list the same concept multiple times by performing a can-
onicity test. Conceptually, CbO is similar to NextClosure [9] because it uses the same canonicity test but NextClosure lists
concepts in a different order. In [21], CbO is described in terms of backtracking. In this section we are going to use a simpli-
fied version of CbO introduced in [15] which is formalized by a recursive procedure performing a depth-first search in the
space of all formal concepts. This type of description will shed more light on the new algorithm.
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The core of CbO is a recursive procedure GENERATEFROM, see Algorithm 1. The procedure accepts a formal concept hA,Bi (an
initial formal concept) and an attribute y 2 Y (first attribute to be processed) as its arguments. The procedure recursively des-
cends through the space of formal concepts, beginning with hA,Bi.

Algorithm 1: Procedure GENERATEFROM(hA,Bi,y)

1 list hA,Bi (e.g., print hA,Bi on the screen);
2 if B = Y or y > n then
3 return
4 end
5 for j from y upto n do
6 if j R B then
7 set C to A \ {j};;
8 set D to C";
9 if B \ Yj = D \ Yj then

10 GENERATEFROM hC;Di; jþ 1ð Þ;
11 end
12 end
13 end
14 return

When invoked with hA,Bi and y 2 Y, GENERATEFROM first lists hA,Bi (line 1) and then it checks its halting condition (lines 2–
4). The computation stops either when hA,Bi equals hY;,Yi (the least formal concept has been reached) or y > n (there are no
more remaining attributes to be processed). Otherwise, the procedure goes through all attributes j 2 Y such that j P y which
are not present in the intent B (lines 5 and 6). For each such j 2 Y, a new formal concept hC,Di = hA \ {j};, (A \ {j};)"i is com-
puted (lines 7 and 8). After obtaining hC,Di, the algorithm uses the canonicity test to check whether it should continue with
hC,Di by recursively calling GENERATEFROM or whether hC,Di should be ‘‘skipped’’. The canonicity test (line 9) is based on com-
paring B \ Yj = D \ Yj where Yj # Y is defined by
Yj ¼ fy 2 Yjy < jg: ð8Þ
If the test passes, GENERATEFROM is called with hC,Di and j + 1, otherwise, the loop between lines 5–13 continues with the next
value of j. The algorithm is correct: if GENERATEFROM is invoked with h;;,;#"i and 0, it lists each formal concept exactly once, i.e.,
the canonicity test prevents a concept from being listed multiple times. The proof for the original CbO is elaborated in [18].

Since we have formulated the algorithm as a recursive procedure rather than using backtracking, we provided an inde-
pendent proof of its correctness using so-called derivations which we introduced in [15] for the purpose of analysis of par-
allel implementations of CbO. Recall from [15] that derivations correspond to recursive invocations of GENERATEFROM. In a
more detail, for hA1;B1i; hA2;B2i 2 BðX;Y ; IÞ and integers y1,y2 2 Y [ {n + 1} let hhA1,B1i,y1i ‘ hhA2,B2i,y2i denote that for
m = y2 � 1 the following conditions

(i) m R B1,
(ii) y1 < y2,

(iii) B2 = (B1 [ {m})#", and
(iv) B1 \ Ym = B2 \ Ym where Ym is defined by (8)

are all satisfied. A derivation of hA;Bi 2 BðX;Y ; IÞ of length k + 1 is any sequence
hh;#; ;#"i;0i ¼ hA0;B0i; y0h i; hA1; B1i; y1h i; . . . ; hAk; Bki; ykh i ¼ hA;Bi; ykh i ð9Þ
such that hhAi,Bii,yii ‘ hhAi+1,Bi+1i,yi+1i for each i = 0, . . . ,k � 1. If hA,Bi has a derivation of length k we say that hA,Bi is deriv-
able in k steps.

We can prove the following

Theorem 1 (Existence and Uniqueness of Derivations [15]). Each hA;Bi 2 BðX;Y ; IÞ has exactly one derivation. Namely, the
derivation of the form (9) in which yi = mi + 1 and mi = min{y 2 Bjy R Bi�1} hold for all 0 < i 6 k. h

There is a correspondence between derivations and consecutive invocations of the procedure GENERATEFROM. Namely,
hhA,Bi,yi ‘ hhC,Di,ki iff the invocation of GENERATEFROMðhA;Bi; yÞ causes GENERATEFROMðhC;Di; kÞ to be called in line 10 of Algo-
rithm 1. Indeed, (i) ensures that the condition in line 6 of Algorithm 1 is satisfied, (ii) corresponds to the fact that the loop
between lines 5–13 goes from y upwards, (iii) says that D is the intent computed in line 8 because
D ¼ ðB [ fmgÞ#" ¼ ðB [ fk� 1gÞ#" ¼ ðA \ fk� 1g#Þ" ¼ C"
and (iv) is true iff the condition in line 9 is true.



Fig. 1. Call tree of GENERATEFROM for I # X � Y from Example 1.
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The computation of Algorithm 1 and the corresponding derivations can be depicted by a tree as that in Fig. 1. The tree
contains two types of nodes: (i) nodes represented by couples hCi,yii corresponding to invocations of GENERATEFROM with
the arguments Ci (a formal concept) and yi (an attribute), and (ii) leaf nodes denoted by black squares representing computed
concepts for which the canonicity test fails. Edges in the tree are labeled by the values of j which are used to compute (new)
formal concepts, see lines 7 and 8 of Algorithm 1. That is, nodes hCi,yii and hCj,yji are connected by an edge with label k iff
hCi,yii ‘ hCj,yji and yj = k + 1. We call such a tree a call tree of GENERATEFROM for a given I # X � Y. It is easily seen that each path
from the root of the tree to any node labeled by hCi,yii corresponds to a derivation of hCi,yii. Due to Theorem 1, the nodes
labeled by hCi,yii are always in a one-to-one correspondence with formal concepts in BðX;Y; IÞ, showing that the Algorithm
1 is correct. Let us note that there is a correspondence between a call tree like that in Fig. 1 and a CbO-tree described in [21]:
our derivations correspond to canonical paths in the CbO-tree. Moreover, paths which are not canonical according to [21] can
be seen as paths from the root node of the call tree of GENERATEFROM to nodes labeled by black squares.

Example 1. Algorithm 1 and derivations are further demonstrated by the following example. Consider a set X = {0, . . . ,3} of
objects and a set Y = {0, . . . ,5} of attributes. An incidence relation I # X � Y is given by the following table:
I
 0
 1
 2
 3
 4
 5
0
 �
 �
 �

1
 �
 �
 �
 �
 �

2
 �
 �
 �

3
 �
 �
where rows correspond to objects from X, columns correspond to attributes from Y, and table entries ‘‘�’’ or ‘‘blank’’ indicate

whether for an object x and an attribute y we have hx,yi 2 I or hx,yi R I, respectively. The concept-forming operators
" : 2X ? 2Y and ; : 2Y ? 2X induced by such I have 12 fixpoints:
C1 ¼ hf0;1;2;3g; ;i; C5 ¼ h;; f0;1;2;3;4;5gi; C9 ¼ hf1;2g; f0;4gi;
C2 ¼ hf0;1;2g; f0gi; C6 ¼ hf2g; f0;1;4gi; C10 ¼ hf0;2;3g; f1gi;
C3 ¼ hf0;2g; f0;1gi; C7 ¼ hf0;1g; f0;2gi; C11 ¼ hf0;3g; f1;2gi;
C4 ¼ hf0g; f0;1;2gi; C8 ¼ hf1g; f0;2;3;4;5gi; C12 ¼ hf0;1;3g; f2gi:
The concepts are numbered as they are listed by procedure GENERATEFROM. Notice that C1 = h;;,;#"i represents the initial formal
concept which is processed by GENERATEFROM. The corresponding call tree can be found in Fig. 1. One can read from the tree
that, for example, hC1,0i ‘ hC2,1i, hC2,1i ‘ hC3,2i, and hC3,2i ‘ hC6,5i. Therefore, hC1,0i, hC2,1i, hC3,2i, hC6,5i is a derivation and
C6 is derivable in 4 steps. The dataset used in this example will be used to illustrate our improvement of the canonicity
test. j
3. Improved canonicity test and FCbO

In this section, we propose an improvement of the canonicity test used by CbO that reduces the number of formal con-
cepts computed multiple times. In a call tree like that in Fig. 1, such formal concepts are depicted by the black-square nodes.
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Our new test and the improved algorithm will reduce the number of such nodes in the call tree without altering the rest of
the tree. The major problem with the original canonicity test used by CbO is that it is always used after a new formal concept
is computed, i.e., after performing the operation of computing a new fixpoint of #". We propose to employ an additional test
that can be performed before a new formal concept is computed, eliminating thus the expensive computation of fixpoints.

3.1. Fast canonicity test

Let us first inspect the canonicity test
B \ Yj ¼ D \ Yj ð10Þ
that appears in line 9 of Algorithm 1. Since #" is a closure operator and D = (B [ {j})#", the monotony of #" yields B # D. Thus, it
is sufficient to check just the inclusion B \ Yj � D \ Yj instead of (10). In other words, the test succeeds iff D and B agree on all
attributes which are smaller than j. Hence, the test (10) fails (i.e., the equality is not true) iff the fixpoint D = (B [ {j})#" con-
tains an attribute which is ‘‘before j’’ and the attribute is not present in B. Let us denote all such attributes by B j, i.e.
B j ¼ ðD n BÞ \ Yj ¼ ðB [ fjgÞ#" n B
� �

\ Yj: ð11Þ
The following lemma shows that knowing that (10) fails for given B and j R B, we can conclude that the test will also fail for
each B0 � B with j R B0 as long as B j contains an attribute which is not in B0:

Lemma 2 (On Test Failure Propagation). Let B # Y, j R B, and B j – ;. Then, for each B0 � B such that j R B0 and B j 6# B0, we
have B0 j – ;.
Proof. Notice that B j = (DnB) \ Yj – ; for D = (B [ {j})#" means that (10) fails for such B, D and j R B. Take any B0 � B such
that j R B0 and B j 6# B0. Let D0 = (B0 [ {j})#". Since j R B0, we get B0 � D0. In order to show that B0 j – ;, we prove that
B0 \ Yj � D0 \ Yj. Since B j 6# B0, there is an attribute y 2 B j such that y R B0. Thus, it suffices to prove that y 2 D0 \ Yj. The
fact that y 2 Yj follows directly from y 2 B j = (DnB) \ Yj. Moreover, y 2 B j yields y 2 D. Using monotony of the closure
operator #", we get y 2 D = (B [ {j})#" # (B0 [ {j})#" = D0, proving the claim. Altogether, B0 \ Yj � D0 \ Yj, i.e. B0 j – ;. h

Based on Lemma 2, we get the following characterization of derivations:

Theorem 3 (On Nonexistence of Derivations). Let hh;;,;#"i, 0i, . . . , hhA,Bi, yi be a derivation and let j P y be such that j R B and
B j – ;. Then there is no derivation
hh;#; ;#"i;0i; . . . ; hA;Bi; yh i; . . . ; hA0;B0i; y0
� �

; hC 0;D0i; jþ 1
� �

;

where B j 6# B0.
Proof. The claim is a consequence of Lemma 2. Indeed, take arbitrary B0 � B such that B j 6# B0. Assume there is a sequence
hh;#; ;#"i;0i; . . . ; hhA;Bi; yi; . . . ; hhA0;B0i; y0i
which is a derivation of hA0,B0i. We can prove that the derivation cannot be extended by hhC0,D0i, j + 1i. By contradiction, as-
sume that hhA0,B0i,y0i ‘ hhC0,D0i, j + 1i. By definition of ‘‘‘’’, we get D0 = (B0 [ {j})#" and B0 \ Yj = D0 \ Yj, i.e., B0 j = (D0nB0) \ Yj = ;.
On the other hand, we have assumed B j 6# B0, i.e. Lemma 2 yields B0 j – ;, a contradiction to B0 j = ;. h

The result shown in Theorem 3 allows us to split the canonicity test into two parts: First part which is quick and does not
require computing closures and a second part which is basically the original canonicity test. Indeed, according to Theorem 3,
if we know that B j – ; for some j R B then having a derivation
hh;#; ;#"i;0i; . . . ; hA;Bi; yh i; . . . ; hA0;B0i; y0
� �
with B j 6# B0, we automatically know (without computing any closures) that it cannot be further extended by hhC0,D0i, j + 1i.
In other words, D0 = (B0 [ {j})#" is not computed at all. Therefore, the first part of the new test uses the observation of Theo-
rem 3. If the first part of the test cannot be applied because B j = ;, we still have to perform the second part of the test, i.e.,
the original canonicity test which involves computing the closure (B0 [ {j})#". Nevertheless, we will see in Section 4 that the
number of cases in which we actually perform the original canonicity test is surprisingly low compared to the number of
quick tests based on Theorem 3. The idea of the new combined canonicity test is further illustrated by the following example.

Example 2. Consider the input data from Example 1 and the corresponding call tree in Fig. 1. If we apply the new canonicity
test based on Theorem 3, we in fact perform a particular tree pruning in which we omit some of the black-square leaf nodes
of the tree. The result is shown in Fig. 2. The bold edges are those which remain in the call tree. The leaf nodes that are
omitted are denoted in gray and the corresponding edges are dotted. Notice that not all black-square leaf nodes are omitted.
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C8 appears three times as a leaf node, C9 and C5 appear once, meaning that the formal concept C8 is computed four times
during the computation and both C9 and C5 are computed twice. The total number of closures computed during the
computation is 17 which is a significant reduction compared to the 34 nodes of the original call tree in Fig. 1.

Let us outline how the new test is used to prune the tree. Consider the first formal concept C1 = hA1,B1i = h{0,1,2,3},;i, see
Example 1 for the list of all concepts. At this point, we perform the usual canonicity test because we have no information from
previous levels of the tree (we are on the top of the tree). For j 2 {0,1,2}, the test succeeds. For instance, in case of j = 2, we get
C12 = hA12,B12i = h{0,1,3}, {2}i, i.e. B1 \ Y2 = ; = B12 \ Y2. On the other hand, the test fails for j 2 {3,4,5}. For instance, in case of
j = 3, we get C8 = hA8,B8i = h{1}, {0,2,3,4,5}i and hence B1 \ Y3 = ;– {0,2} = B8 \ Y3. Therefore, B1 3 = {0,2}. Analogously, we
get B1 4 = {0} and B1 5 = {0,2,3,4}. The sets B1 3, B1 4 = {0}, and B1 5 can be further used to prune the tree according to
Theorem 3. Indeed, consider the tree node hC10,2i. Since C10 = hA10,B10i = h{0,2,3}, {1}i, we get B1 3 6# B10, B1 4 6# B10, and
B1 5 6# B10, i.e. neither j 2 {3,4,5} can be used to extend the derivation. In case of j = 2, we perform the usual canonicity test
which is successful. In a similar way, the tree can be pruned beginning with the other nodes hCi,yii.

The fast test based on Theorem 3 is not always applicable. It is evident that we cannot apply the test on the top-most level
of the call tree. There are, however, situations where it cannot be applied on deeper levels as well. Consider, e.g., the tree
node hC7,3iwhere C7 = hA7,B7i = h{0,1}, {0,2}i. Since B1 4 = {0} # B7, Theorem 3 cannot be applied. On the other hand, if we
perform the original canonicity test with B7 and (B7 [ {4})#" = {0,2,3,4,5} = B8, we get B7 \ Y4 = {0,2} – {0,2,3} = B8 \ Y4, i.e.,
the derivation cannot be extended by hC8,5i but in order to see this we had to compute the closure (B7 [ {4})#" = B8 which
should be considered an expensive operation (especially in case of large data sets). A similar situation appears in case of the
node hC4,3i and j = 4, cf. Fig. 2. j
3.2. Modified algorithm

In this section, we describe how the new canonicity test based on Theorem 3 can be implemented in an extended version
of CbO. As Example 2 shows, during the computation we have to propagate the information about sets Bi yi which take part
in the new test. In particular, the information must be propagated in the top-down direction, from the root node of the call
tree to the leaves. As a consequence, we have to change the search strategy of the algorithm (the depth-first search in the
space of concepts as it is used in CbO is no longer useful), resulting in a new algorithm called FCbO (‘‘F’’ stands for ‘‘Fast’’).

Remark 1. A call tree is a diagram depicting recursive calls of GENERATEFROM. Consecutive invocations of GENERATEFROM

correspond to the depth-first search in the call tree. For instance, in case of node hC1,0i in Fig. 1, GENERATEFROM continues with
the subtree with root node hC2,1i. After the whole subtree is processed, it continues with the subtree with root node hC10,2i,
etc. The problem with this behavior is that in order to apply the new canonicity test in the subtree with root hC2,1i, we shall
already have the information about B1 3 = {0,2}. Analogously, we get B1 4 = {0} and B1 5 = {0,2,3,4}, see Example 2,
which is available only after we process all attributes in the invocation of hC1,0i. Therefore, we are going to modify
GENERATEFROM so that instead of the recursive calls, it stores information about computed concepts in a queue. Then, after all
attributes are processed, it performs a recursive invocation for each concept in the queue. This effectively changes the order
in which we compute new concepts because we use a combined depth-first and breadth-first search in the call tree but it
does not change the order of listing of formal concepts because the listing appears after each recursive call, as in CbO. j
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Algorithm 2: Procedure FASTGENERATEFROMðhA;Bi; y; fNyjy 2 YgÞ

1 list hA,Bi (e.g., print A and B on screen);
2 if B = Y or y > n then
3 return
4 end
5 for j from y upto n do
6 set Mj to Nj;
7 if j R B and Nj \ Yj # B \ Yj then
8 set C to A \ {j};;
9 set D to C";

10 if B \ Yj = D \ Yj then
11 put hhC,Di, j + 1i to queue;
12 else
13 set Mj to D;
14 end
15 end
16 end
17 while get hhC,Di, ji from queue do
18 FASTGENERATEFROMðhC;Di; j; fMyjy 2 YgÞ;
19 end
20 return

We are going to represent FCbO by a recursive procedure FASTGENERATEFROM, see Algorithm 2. The procedure accepts three
arguments: a formal concept hA,Bi (an initial formal concept), an attribute y 2 Y (first attribute to be processed), and a set
{Ny # Yjy 2 Y} of subsets of attributes Y. The intended meaning of the first two arguments is the same as in case of GENER-

ATEFROM, see Algorithm 1. The purpose of the third argument is to carry information about attributes in sets Bi yi. The precise
meaning of Ny will be specified later. Each invocation of FASTGENERATEFROM uses the following local variables: a queue as a tem-
porary storage for computed concepts and sets of attributes My (y 2 Y) which are used in place of the third argument for fur-
ther invocations of FASTGENERATEFROM.

When invoked with hA,Bi, y 2 Y, and {Nyjy 2 Y}, FASTGENERATEFROM first processes hA,Bi and then it checks the same halting
condition as GENERATEFROM, see lines 1–4. If the computation does not halt, the procedure goes through all attributes j 2 Y such
that j P y, see lines 5–16. For each such j, the procedure creates a local copy Mj of the set Nj (line 6). If j R B, a test based on
Theorem 3 is performed by checking Nj \ Yj # B \ Yj. If the test succeeds, the procedure goes on with computing a new for-
mal concept hC,Di, see lines 8 and 9. Then it performs the original canonicity test (line 10). If the test is positive, the formal
concept hC,Di together with the attribute j + 1 are stored in a queue (line 11). Otherwise, Mj is set to D (line 13). Notice that
the loop between lines 5–15 does not perform any recursive calls of FASTGENERATEFROM. Instead, the information about com-
puted concepts and attributes used to generate the concepts is stored in the queue. The recursive invocations of FASTGENER-

ATEFROM are performed after all the attributes are processed. Indeed, the loop between lines 17–19 goes over all records in
the queue and recursively calls FASTGENERATEFROM with arguments being the new concept, new starting attribute, and new
set of subsets {Myjy 2 Y} of attributes.

In order to list all formal concepts, we invoke Algorithm 2 with h;;,;#"i, y = 0 and {Ny = ;jy 2 Y} as its initial arguments. The
following assertion says that the algorithm is correct:

Theorem 4 (Correctness of FCbO). When invoked with h;;,;#"i, y = 0, and {Ny = ;jy 2 Y}, Algorithm 2 lists all formal concepts in
hX,Y, Ii, each of them exactly once.
Proof. Since Algorithm 1 (CbO) is correct, is it sufficient to show that Algorithm 2 (FCbO) does not omit any formal concept
during the computation. Thus, we have to check that the new canonicity test is applied correctly. The rest follows from the cor-
rectness of Algorithm 1, in particular the existence and uniqueness of derivations, see Theorem 1. Let us inspect the values of
Nj’s and Mj’s during each invocation of FASTGENERATEFROM. During the first invocation, {Ny = ;jy 2 Y}, i.e. Nj \ Yj = ; # B \ Yj is triv-
ially true, i.e. each attribute j R B is processed between lines 8–14. As one can see, during each invocation of FASTGENERATEFROM,
the value of Mj is either equal to Nj (we say that the value of Mj is inherited from previous invocation) or Mj equals D = (B [ {j})#"

(we say that the value of Mj is updated in the current invocation). If Mj is updated then Mj is the intent of a formal concept hC,Di
which fails the canonicity test in line 10. Therefore, it is easy to see that during an invocation of FASTGENER-

ATEFROMðhA;Bi; y; fNyjy 2 YgÞ, for each j P y, either Nj = ; or there is a formal concept hA⁄,B⁄i such that the following hold

(i) B⁄ # B,
(ii) B⁄ j – ;, and

(iii) Nj = (B⁄ [ {j})#".
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Notice that from (iii) it follows that B⁄ j = ((B⁄ [ {j})#"nB⁄) \ Yj = (NjnB⁄) \ Yj. Hence, in order to prove correctness, it
suffices to show that the condition Nj \ Yj # B \ Yj present in line 7 of Algorithm 2 fails iff B⁄ j 6# B which appears in
Theorem 3 as a necessary condition for pruning. Therefore, we prove the following

Claim 1.
B⁄ j # B iff Nj \ Yj # B \ Yj:

‘‘)’’: Let B⁄ j # B. Using (iii), we get (NjnB⁄) \ Yj # B. Furthermore, (i) yields NjnB # NjnB⁄, i.e. we obtain (NjnB) \ Yj # B.
The last inclusion implies that Nj \ Yj # B \ Yj. Indeed, by contradiction, from y 2 Nj \ Yj and y R B it follows that y 2 Nj,
i.e., y 2 NjnB and thus y 2 (NjnB) \ Yj # B because y 2 Yj, contradicting the fact that y R B. Therefore, we have
Nj \ Yj # B \ Yj. ‘‘�’’: Suppose that B⁄ j 6# B. Then, there is y 2 B⁄ j such that y R B. From y 2 B⁄ j and (iii), we get y 2 Nj

and y 2 Yj. Therefore, y 2 Nj \ Yj and y R B \ Nj because y R B, showing Nj \ Yj 6# B \ Yj.
Therefore, as a consequence of Theorem 3, if Nj \ Yj # B \ Yj fails then we can skip the attribute j because B and

D = (B [ {j})#" would fail the canonicity test in line 10. Altogether, FCbO lists all formal concepts, each of them exactly
once. h
Remark 2. In Algorithm 2, the additional information about attributes that is needed to perform the test is stored in proce-
dure arguments Ny which are, in fact, particular intents. On the other hand, the test formulated in Theorem 3 is based on sets
of the form B⁄ j. We use Ny’s instead of sets B⁄ j because of efficiency reasons: Since Ny represents an intent of a concept
that has already been computed, the third argument {Ny = ;jy 2 Y} for FASTGENERATEFROM can be organized as a list (or an array)
of references (pointers) to such intents. Storing referenced objects in a linear data structure is much cheaper an operation
than computing B⁄ j and storing the resulting value. More efficiency issues will be discussed in Section 4. j

The following example illustrates recursive invocations of FASTGENERATEFROM during the computation.

Example 3. We demonstrate the computation of Algorithm 2 for the input data from Example 1 by listing important steps of
the algorithm. We focus on steps performed in lines 1 (listing of found formal concepts), 7 (quick canonicity test), 11 (putting
a new concept to a queue), 13 (updating information about attributes in sets Bi yi), and 18 (recursive invocations of
FASTGENERATEFROM). In addition to that, if an invocation of FASTGENERATEFROM terminates either in line 3 or 20, we denote this fact
by ‘‘\’’ in a separate line. Nested invocations are separated by horizontal indent. In the example, each formal concept is
denoted by Ci = hAi,Bii, i.e., each Bi is the intent of the corresponding Ci. The rest of the notation is the same as in Algorithm 2.
When FASTGENERATEFROM is invoked with C1, 0, and {Ny = ;jy 2 Y}, the computation proceeds as follows:

line 1: list C1 = h{0,1,2,3},;i
line 7: trivial success for j = 0 because N0 = ;
line 11: put hC2,1i = hh{0,1,2}, {0}i,1i to queue
line 7: trivial success for j = 1 because N1 = ;
line 11: put hC10,2i = hh{0,2,3}, {1}i,2i to queue
line 7: trivial success for j = 2 because N2 = ;
line 11: put hC12,3i = hh{0,1,3}, {2}i,3i to queue
line 7: trivial success for j = 3 because N3 = ;
line 13: set M3 to D = (; [ {3})#" = {0,2,3,4,5} = B8

line 7: trivial success for j = 4 because N4 = ;
line 13: set M4 to D = (; [ {4})#" = {0,4} = B9

line 7: trivial success for j = 5 because N5 = ;
line 13: set M5 to D = (; [ {5})#" = {0,2,3,4,5} = B8

line 18: get hC2,1i from queue and call FASTGENERATEFROM(C2, 1, {Myjy 2 Y})
line 1: list C2 = h{0,1,2}, {0}i
line 7: trivial success for j = 1 because N1 = ;
line 11: put hC3,2i = hh{0,2}, {0,1}i,2i to queue
line 7: trivial success for j = 2 because N2 = ;
line 11: put hC7,3i = hh{0,1}, {0,2}i,3i to queue
line 7: failure for j = 3, B = {0}, and N3 = {0,2,3,4,5} = B8 because {2} 6# B
line 7: success for j = 4, B = {0}, and N4 = {0,4} = B9

line 11: put hC9,5i = hh{1,2}, {0,4}i,5i to queue
line 7: failure for j = 5, B = {0}, and N5 = {0,2,3,4,5} = B8 because {2,3,4} 6# B
line 18: get hC3,2i from queue and call FASTGENERATEFROM(C3,2, {Myjy 2 Y})

line 1: list C3 = h{0,2}, {0,1}i
line 7: trivial success for j = 2 because N2 = ;
line 11: put hC4,3i = hh{0}, {0,1,2}i,3i to queue

(continued on next page)
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line 7: failure for j = 3, B = {0,1}, and N3 = {0,2,3,4,5} = B8 because {2} 6# B
line 7: success for j = 4, B = {0,1}, and N4 = {0,4} = B9

line 11: put hC6,5i = hh{2}, {0,1,4}i,5i to queue
line 7: failure for j = 5, B = {0,1}, and N5 = {0,2,3,4,5} = B8 because {2,3,4} 6# B
line 18: get hC4,3i from queue and call FASTGENERATEFROMðC4;3; fMyjy 2 YgÞ

line 1: list C4 = h{0},{0,1,2}i
line 7: success for j = 3, B = {0,1,2}, and N3 = {0,2,3,4,5} = B8

line 11: put hC5,4i = h h;,{0,1,2,3,4,5}i,4i to queue
line 7: success for j = 4, B = {0,1,2}, and N4 = {0,4} = B9

line 13: set M4 to D = ({0,1,2} [ {4})#" = {0,1,2,3,4,5} = B5

line 7: failure for j = 5, B = {0,1,2}, and N5 = {0,2,3,4,5} = B8 because {3,4} 6# B
line 18: get hC5,4i from queue and call FASTGENERATEFROM(C5,4, {Myjy 2 Y})

line 1: list C5 = h;,{0,1,2,3,4,5}i
\ return from invocation for C5

\ return from invocation for C4

line 18: get hC6,5i from queue and call FASTGENERATEFROM(C6,5, {Myjy 2 Y})
line 1: list C6 = h{2}, {0,1,4}i
line 7: failure for j = 5, B = {0,1,4}, and N5 = {0,2,3,4,5} = B8 because {2,3} 6# B
\ return from invocation for C6

\ return from invocation for C3

line 18: get hC7,3i from queue and call FASTGENERATEFROMðC7;3; fMyjy 2 YgÞ
line 1: list C7 = h{0,1}, {0,2}i
line 7: success for j = 3, B = {0,2}, and N3 = {0,2,3,4,5} = B8

line 11: put hC8,4i = hh{1}, {0,2,3,4,5}i,4i to queue
line 7: success for j = 4, B = {0,2}, and N4 = {0,4} = B9

line 13: set M4 to D = ({0,2} [ {4})#" = {0,2,3,4,5} = B8

line 7: failure for j = 5, B = {0,2}, and N5 = {0,2,3,4,5} = B8 because {3,4} 6# B
line 18: get hC8,4i from queue and call FASTGENERATEFROMðC8;4; fMyjy 2 YgÞ

line 1: list C8 = h{1}, {0,2, 3,4,5}i
\ return from invocation for C8

\ return from invocation for C7

line 18: get hC9,5i from queue and call FASTGENERATEFROMðC9;5; fMyjy 2 YgÞ
line 1: list C9 = h{1,2}, {0,4}i
line 7: failure for j = 5, B = {0,4}, and N5 = {0,2,3,4,5} = B8 because {2,3} 6# B
\ return from invocation for C9

\ return from invocation for C2

line 18: get hC10,2i from queue and call FASTGENERATEFROMðC10;2; fMyjy 2 YgÞ
line 1: list C10 = h{0,2,3}, {1}i
line 7: trivial success for j = 2 because N2 = ;
line 11: put hC11,3i = hh{0,3}, {1,2}i,3i to queue
line 7: failure for j = 3, B = {1}, and N3 = {0,2,3,4,5} = B8 because {0,2} 6# B
line 7: failure for j = 4, B = {1}, and N4 = {0,4} = B9 because {0} 6# B
line 7: failure for j = 5, B = {1}, and N5 = {0,2,3,4,5} = B8 because {0,2,3,4} 6# B
line 18: get hC11,3i from queue and call FASTGENERATEFROMðC11;3; fMyjy 2 YgÞ

line 1: list C11 = h{0,3}, {1,2}i
line 7: failure for j = 3, B = {1,2}, and N3 = {0,2,3,4,5} = B8 because {0} 6# B
line 7: failure for j = 4, B = {1,2}, and N4 = {0,4} = B9 because {0} 6# B
line 7: failure for j = 5, B = {1,2}, and N5 = {0,2,3,4,5} = B8 because {0,3,4} 6# B
\ return from invocation for C11

\ return from invocation for C10

line 18: get hC12,3i from queue and call FASTGENERATEFROMðC12;3; fMyjy 2 YgÞ
line 1: list C12 = h{0,1,3}, {2}i
line 7: failure for j = 3, B = {2}, and N3 = {0,2,3,4,5} = B8 because {0} 6# B
line 7: failure for j = 4, B = {2}, and N4 = {0,4} = B9 because {0} 6# B
line 7: failure for j = 5, B = {2}, and N5 = {0,2,3,4,5} = B8 because {0,3,4} 6# B
\ return from invocation for C12

\ return from invocation for C1
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Notice that line 7 is either success or failure depending on the outcome of the new canonicity test. Each occurrence of line
7 is followed either by line 11 or line 13 depending on the outcome of the original canonicity test in line 10 (for brevity, line
10 is not displayed). j
3.3. On the relationship to NextClosure

Notice that FCbO lists all formal concepts in the same order as CbO. Although FCbO first computes closures which are put
in a queue and then makes the appropriate recursive calls, it lists the concepts in the same order as CbO because the listing is
performed as a first action after the invocation of FASTGENERATEFROM. Hence, the listing does not necessarily follow the com-
putation of a closure as it can be seen from Example 3.

The order in which concepts are listed by FCbO can be changed in various ways. For instance, if we move line 1 of Algo-
rithm 2 between lines 11 and 12, the concept will be listed in an order which agrees with the combined breadth-first and
depth-first search order of the call tree, see Remark 1.

More importantly, the algorithm can be easily modified to produce formal concepts in the same order as Ganter’s Next-
Closure algorithm [9]. Recall that NextClosure lists all concepts in a lectic order: B1 # Y is lecticly smaller [10] than B2 # Y,
denoted B1 <‘ B2, if the smallest element that distinguishes B1 and B2 belongs to B2. That is,
B1 <‘ B2 iff there is j 2 B2 n B1 such that B1 \ Yj ¼ B2 \ Yj; ð12Þ
where Yj is defined as in (8). It can be shown that <‘ is a total strict order on 2Y. NextClosure lists the formal concepts in the
(unique) order <‘ by an iterative computation of lectic successors, starting with the lecticly smallest concept h;;,;#"i. The fol-
lowing claim characterizes nodes of a call tree in terms of their lectic relationship.

Theorem 5. Let {hh;;,;#"i, 0i, . . . , hC,yi, hCi,yi + 1iji 2 J} be a J-indexed set of derivations of formal concepts Ci with intents Bi. Let B
be the intent of C. Then the following are true:
(i) for each i 2 J:B <‘ Bi,
(ii) for each j,k 2 J with yj < yk and each hC⁄, y⁄ + 1i such that hCk,yk + 1i ‘ ⁄hC⁄, y⁄ + 1i : B⁄ <‘ Bj where B⁄ is intent of C⁄ and ‘⁄ is

the reflexive and transitive closure of ‘.
Proof. See Fig. 3 for a symbolic schema for the proof.

(i) is easy to see: Since hC,yi ‘ hCi,yi + 1i, we have B \ Yyi
¼ Bi \ Yyi

. In addition to that, yi 2 Bi and yi R B, i.e. (12) is satisfied
for j being yi, showing B <‘ Bi.

(ii) We check that for yj we have B� \ Yyj
¼ Bj \ Yyj

; yj R B�, and yj 2 Bj. From this, we get B⁄ <‘ Bj directly from (12). Notice
that yj < yk implies Yyj

� Yyk
. Thus, from B \ Yyk

¼ Bk \ Yyk
it follows that B \ Yyj

¼ Bk \ Yyj
. Using B \ Yyj

¼ Bj \ Yyj
and

the latter equality, we get Bk \ Yyj
¼ Bj \ Yyj

. Moreover, from hCk,yk + 1i ‘⁄ hC⁄,y⁄ + 1i it follows that Bk \ Yyk
¼ B� \ Yyk

,
i.e., Bk \ Yyj

¼ B� \ Yyj
because yj < yk. Putting Bk \ Yyj

¼ B� \ Yyj
and Bk \ Yyj

¼ Bj \ Yyj
together, we get

B� \ Yyj
¼ Bj \ Yyj

. Thus, it remains to show that yj 2 Bj and yj R B⁄. The first claim is evident. In order to prove yj R B⁄,
observe that yj R B and consequently yj R B \ Yyk

¼ Bk \ Yyk
¼ B� \ Yyk

, meaning that yj R B⁄ because yj < yk. h

Theorem 5 shows how the call tree should be traversed if anyone wants to list all concepts according to <‘. If we take the
concepts C and {Ciji 2 J} as in Theorem 5, we can see that C should be listed before all Ci’s due to (i). Furthermore, if we take
two different concepts Cj and Ck (j,k 2 J), Ck should be listed before Cj iff yj < yk because of (ii). Therefore, (i) and (ii) mean that
given a subtree of a call tree, the root node must be listed first and the descending nodes Ci should be listed in a descending
order according to yi. Furthermore, (ii) says that each node C⁄ derivable from Ck should also be listed before Cj and, at the
same time, after Ck because of (i). This means that in order to list all formal concepts in a lectic order, we have to perform
a depth-first search through the call tree, assuming that we process all attributes in the descending order. Since Algorithm 2
already performs the depth-first search, it suffices to ensure the descending order of processed attributes. We can do that by
modifying Algorithm 2 in one of the following ways:

(i) we can use a stack instead of a queue to store computed formal concepts, or
(ii) we can modify the loop in line 5 so that it goes ‘‘from n downto y’’.

This way for obtaining concepts in a lectic order is much faster than the iterative algorithm from [10] because we can
compute fixpoints of #" more efficiently, see Section 4, and we employ the fast canonicity test. Performance comparisons
can be found in Section 4.2.



Fig. 3. Schema for the proof of Theorem 5.

124 J. Outrata, V. Vychodil / Information Sciences 185 (2012) 114–127
3.4. On the relationship to AddIntent

In [27], the authors have introduced an incremental algorithm AddIntent for computing formal concepts together with
the subconcept–superconcept hierarchy 6 given by (7). Unlike FCbO, the algorithm proposed in [27] is incremental, i.e., it
incrementally computes the concept lattice of given context by adding all attributes (or objects as in [27]) one by one. Inter-
estingly, AddIntent includes a particular optimization that is analogous to the fast canonicity test of FCbO introduced in this
paper. The key difference is that AddIntent uses a slightly different canonicity test that is based on the ordering 6 of formal
concepts (7), whereas FCbO uses the order of processed attributes. The approach used by AddIntent is more beneficial if one
wants to compute the whole concept lattice instead of just computing the formal concepts. On the other hand, the approach
taken by FCbO is simpler and is more efficient if only the set of formal concepts is considered.

Using the notation from our paper, [27] defines a notion of a canonical generator of a formal concept hC,Di which can be
described as follows. First, denote by BiðX;Yi; IiÞ the set of all formal concepts of a formal context hX,Yi, Iii where
Ii = I \ (X � Yi) with Yi defined as in (8) (i.e., hX,Yi, Iii represents the original context restricted to attributes 0, . . . , i � 1). Then,
hC;Di 2 Biþ1ðX;Yiþ1; Iiþ1Þ is called new in Biþ1ðX;Yiþ1; Iiþ1Þ if C is distinct from all concept extents from BiðX;Yi; IiÞ. Further-
more, if hC,Di is new in Biþ1ðX;Yiþ1; Iiþ1Þ, then hA;Bi 2 BiðX;Yi; IiÞ is called a generator of hC,Di if D ¼ ðB [ figÞ#Iiþ1

"Iiþ1 and thus
C ¼ A \ fig#Iiþ1 . A canonical generator hA,Bi of hC,Di is then the infimum
hA;Bi ¼
\
j2J

Aj;
[
j2J

Bj

 !#Ii
"Ii

* +
of all generators hAj;Bji 2 BiðX;Yi; IiÞ ðj 2 JÞ of hC,Di. Then, the authors of [27] utilize the fact that if hA,Bi is a canonical gen-
erator of a new concept hE,Fi and hC,Di is a non-canonical generator of hE,Fi then any concept hG,Hi such that D � H and
B 6# H is not a canonical generator of any new concept, cf. [27, Proposition 1]. As a consequence, AddIntent does not have
to process concepts like hG,Hi during the search for canonical generators. On one hand, this is an analogous improvement
like that proposed in this paper, see Lemma 2. On the other hand, improvements in both AddIntent and FCbO are based
on different notions of canonicity (we do not use the lattice order 6) and different approaches (incremental and non-incre-
mental) of computing formal concepts.
4. Complexity and efficiency issues

It is a well-known fact that the limiting factor of computing all formal concepts is that the corresponding counting prob-
lem is #P-complete [18,20]. Fortunately, if jIj is considerably small, one can get the set of all formal concepts in reasonable
time even if X and Y are large. Therefore, there have been proposed various algorithms for FCA specialized on sparse inci-
dence data. FCbO performs well in case of both sparse and dense data of reasonable size. From the point of view of the
asymptotic worst-case complexity, FCbO has time delay O(jYj3 � jXj), see [14], and asymptotic time complexity
OðjBðX; Y; IÞj � jY j2 � jXjÞ because in the worst case, FCbO can degenerate into the original CbO [19,21] but in general, it cannot
do worse than CbO. In addition, there are strong indications that on average FCbO delivers the results faster than CbO. There-
fore, the average-case complexity analysis of FCbO and ramifications of the worst-case complexity of FCbO seem to be chal-
lenging and important open problems.

In this section we focus on two aspects of FCbO. First, we discuss suitable data representation for efficient computation of
closures of #" which can be used by both CbO and FCbO including their derivatives like PCbO [15]. The second subsection
presents an experimental evaluation of FCbO performance on real and synthesized data sets. The observations made therein
illustrate the average-case behavior of the algorithm.
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4.1. Improving efficiency of computing closures

The input formal context I # X � Y is usually represented in a computer by a two-dimensional array which corresponds
with I in the obvious way. We suggest to represent I by a collection of sets representing all rows of such two-dimensional
array. By a row (corresponding to x 2 X) we mean a set of attributes {x}" = {y 2 Ijhx,yi 2 I}. Clearly, if we take set
O ¼ ffxg"jx 2 Xg, we have hx,yi 2 I iff y 2 {x}" iff x 2 {y};.

Representing I by O, we can significantly improve the computation of a new formal concept which is done in lines 8 and 9
of Algorithm 2. Given formal concept hA,Bi and j R B, we can compute
hC;Di ¼ A \ fjg#; ðA \ fjg#Þ"
D E

¼ A \ fjg#; ðB [ fjgÞ#"
D E
as it is shown in Algorithm 3. Thus, lines 8 and 9 of Algorithm 2 can be replaced by a single call of COMPUTECLOSUREðhA;Bi; jÞ. The
algorithm is correct. Indeed, it is evident that C = A \ {j}; and D ¼

T
x2A\fjg#fxg

" ¼
S

x2A\fjg# fxg
� �"

¼ ðA \ fjg#Þ" ¼ ðB [ fjgÞ#".

Algorithm 3: Procedure COMPUTECLOSUREðhA; Bi; jÞ

1 set C to ;;
2 set D to Y;
3 foreach x in A do
4 if j 2 {x}" then
5 set C to C [ {x};
6 set D to D \ {x}";
7 end
8 end
9 return hC,Di
Remark 3. A straightforward method for computing new formal concepts is based on definitions (5) and (6) of the concept-
forming operators. The method can be implemented by a direct two-way algorithm which first computes the extent (B [ {j});

which is further used to compute the intent (B [ {j})#". Contrary to that, the procedure COMPUTECLOSURE computes the extent by
filtering out the objects x from A for which it does not hold j 2 {x}". In addition to that, during the computation of an extent,
we also compute the corresponding intent by computing intersections of D and rows {x}". This can be done more efficiently
especially if {x}" are organized as bit arrays. Thus, the algorithm relies on efficient implementation of sets and a single
operation on sets: the intersection. Since computing intersections is generally more efficient than implementing the
concept-forming operators, Algorithm 3 significantly outperforms the naive two-way algorithm. A detailed comparison of
various data structures used for computing formal concepts can be found in [17]. j
4.2. Experimental evaluation

We have run several experiments to compare the algorithm with CbO [19,21], Andrews’s In-Close [2] and Ganter’s Next-
Closure [9]. For the sake of comparison, we have implemented our algorithm, CbO and NextClosure in ANSI C while the
implementation of In-Close was borrowed from the author. As suggested in the previous section, we represented input data
tables by set O of table rows. Sets of attributes were represented by bit-arrays, where each bit represented the presence/ab-
sence of an attribute in a set. When storing a bit-array as an array of 32-bit or 64-bit integers, depending on the hardware
architecture, all of the set operations with attributes, especially the set intersection, can be implemented by bitwise opera-
tions ‘‘and’’, ‘‘not’’, and ‘‘xor’’ on integers. These operations are implemented in arithmetic logic units (ALUs) of all computer
processors. This representation is beneficial, e.g., in Algorithm 3 in line 6, where we can process up to 32 or 64 attributes at a
time.

The experiments were run on otherwise idle 32-bit i386 hardware (Intel Core 2 Duo T9600, 2.8 GHz, 4 GB RAM). We per-
formed two types of experiments. First, we were interested in the performance of all four algorithms measured by running
time. Second, and more importantly, in order to evaluate the influence of the new canonicity test, we compared FCbO and
CbO in terms of the total number of computed closures.

In the first set of experiments, we have run the algorithms on randomly generated data tables with various percentages of
1’s in the table. We have used tables with 10,000 objects and the number of attributes ranging from 50 to 200 attributes. To
illustrate the performance of algorithms, Fig. 4(left) shows a graph of dependency of time required to compute all formal
concepts on the number of attributes in data tables with 10% of nonzero entries. We have not depicted the graph of average
running time of NextClosure since there is a huge performance gap between the algorithm and the other algorithms (for in-
stance FCbO is approximately 100 times faster than NextClosure on the evaluated data); the solid line is for FCbO, the dashed
line is for CbO and the dotted line is for In-Close. In the FCbO/CbO comparison, the graph illustrating the average numbers of
computed closures is depicted in Fig. 5(left); again, the solid line is for FCbO and the dashed line for CbO. Note that the graph



Fig. 4. Average running time dependent on number of attributes (on the left) and on fill ratio (density of 1’s, on the right), solid line – FCbO, dashed line –
CbO, dotted line – In-Close.
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actually depicts the numbers divided by average concept lattice size (i.e., the number of closures which pass both the new, in
case of FCbO, and the original canonicity test). Furthermore, to illustrate the influence of the fill ratio (density of 1’s) of a data
table on the speed of the algorithms and on the number of computed closures, we have included Figs. 4 and 5(right) which
show graphs of dependencies on the fill ratios.

The second set of experiments were done with several data sets from the UCI Machine Learning Repository [4,13]. The
results for performance times and numbers of computed closures are depicted in Fig. 6, along with the information on size
and fill ratio of used data sets and concept lattice size.

From all the time and closure number dependency graphs and the table we can see that the FCbO algorithm significantly
outperforms NextClosure and also considerably outperforms both the CbO and In-Close algorithms. In both cases, the per-
formance gain is due to the new canonicity test which avoids a large number of concepts to be computed multiple times (cf.
the numbers of closures computed by FCbO and CbO in case of the MUSHROOM data set, for instance, in Fig. 6). In case of
NextClosure [9], the performance gain is then further multiplied by a more efficient computation of closures described in
Section 4.1. The efficiency of the new ‘‘fast’’ test is illustrated by the graphs and the table depicting the numbers of closures
computed by CbO (and NextClosure) and by FCbO.
5. Conclusions

We have introduced an algorithm called FCbO for computing formal concepts in object-attribute data tables. The algo-
rithm results from CbO [19,21] by introducing a new canonicity test. We have proved correctness of the algorithm and pre-
Fig. 5. Ratio of average number of closures computed by FCbO (solid line) and by CbO (dashed line) to average concept lattice size dependent on number of
attributes (on the left) and on fill ratio (density of 1’s, on the right).

Fig. 6. Performance (in seconds) and numbers of closures computed by CbO and FCbO for selected datasets.
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sented an experimental evaluation of its performance compared to the original CbO, Ganter’s NextClosure and also to An-
drews’s In-Close, another contemporary derivative of CbO. The experiments have shown that FCbO significantly reduces
the number of computed closures while maintaining a resonable overhead and hence delivers results faster than the other
algorithms. The implementation of the algorithm can be downloaded from

http://fcalgs.sourceforge.net/fcbo-ins.html.

The future research will focus on further refinements and extensions of the algorithm and will focus in a more detail on
the relationship between various recently-developed algorithms [2,27].
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