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(radim.belohlavek@upol.cz), Jan Outrata (jan.outrata@upol.cz) and Vilém
Vychodil (vilem.vychodil@upol.cz) (sections 2.3 and 3.2). All authors have
the even share in the results and findings contained in the respective parts.





Věnuji svým rodič̊um
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Preface

The goal of the work presented in the thesis was development of new, or
improvement of existing, algebraic methods of data mining (DM), namely
clustering techniques. Data mining is an area of data analysis the subject
of which is to unfold, reveal or discover (blankly “dig out” or “mine”) the
relatively smaller amount of unknown, essential information or knowledge
and relationships hidden in (usually) large amount of data. Clustering tech-
niques as methods of DM does so by grouping (somehow) similar records
in data and forming so-called clusters together with relationships between
them. Data mining is worldwide actual topic in research of analyzing data
and artificial intelligence, since present and even future information sys-
tems are storing enormously large and for humans ungraspable amount of
information in the form of data.

The work focuses on relatively new method of data mining called Formal
Concept Analysis (FCA, [27]) and utilizes the (algebraic) clustering tech-
nique of factorization to reduce the amount of structured information on
the output of FCA. Formal concept analysis is an algebraic method of data
mining, particularly exploratory data analysis, which aims at extracting a
hierarchical structure (so-called concept lattice) of clusters (so-called formal
concepts) and a collection of implication rules from object-attribute data
tables (tabular data) describing the relationship between the collection of
objects and the collection of attributes. In the work only the hierarchical
structure of clusters is considered. In basic setting, the attributes are bi-
nary presence/absence attributes and more general attributes are suitably
transformed with respect of the meaning of attributes. However, the trans-
formation almost always means losing certain nature of data. The work deals
with graded (fuzzy) attributes, like big or cheap, which apply to objects to
intermediate degrees, not necessarily false or true only. The transforma-
tion of such attributes would lead to loss of the uncertainty or vagueness
expressed in relationships between objects and attributes. For dealing with
data tables containing fuzzy attributes, various extensions of FCA have been
proposed, e.g. Burusco & Fuentes-Gonzales [20], Pollandt [37], Bělohlávek
et al. [2], Krajči [34], BenYahia et al. [43]. Fuzzy FCA extends the origi-
nal (“classical”, crisp) FCA in working with many-valued fuzzy attributes
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directly.
FCA has been applied in various fields of research, for instance in software
engineering (information for software redesign), regulation systems and civil
engineering (system for checking dependencies in regulations), text classifi-
cation and classification and systematizing in general, psychology (develop-
ment, applying and classification of concepts by children), physiology; see
[27] and [22] for references and a survey of applications.
One of the hottest problems in application of FCA is a possibly large number
of clusters/concepts extracted from data. A direct user comprehension and
interpretation of the hierarchical structure of formal concepts may be diffi-
cult. There have been several methods proposed to help to reduce or manage
the size of the structure, for instance decomposition [27], applying some clas-
sical (heuristic) or algebraic (factorization) clustering technique [36], dealing
with a relevant local part of the structure of formal concepts [21], selection
of relevant attributes [23] or using additional information to data table [16].
Interesting two approaches to reduce the size of a concept lattice, further
extending formal concept analysis (FCA) of data with fuzzy attributes, were
recently proposed in the literature. Namely, the approach via hedges [17]
and the approach via thresholds [26]. Both of the approaches present pa-
rameterized ways to reduce the size of a concept lattice of data with fuzzy
attributes. In the work, we show basic relationships between the two ap-
proaches. Furthermore, we show that the approaches can be combined in a
natural way, i.e. we present an approach in which one deals with both thresh-
olds and hedges. An important role in this analysis is played by so-called
shifts of fuzzy attributes which appeared earlier in the study of factorization
of fuzzy concept lattices.
Factorization, is one of the methods trying to apply some sort of cluster-
ing to make the structure of formal concepts smaller. Instead of viewing
the whole structure, it provides a granular view through a factor structure,
which can be considered a suitable granularized version of the original struc-
ture. Its elements are collections of pairwise similar original concepts and
the factor structure is smaller than the original one. The main purpose is
thus to have a smaller lattice which can be seen as a reasonable approx-
imation of the original, possibly large, fuzzy concept lattice. In order to
compute the factor structure (directly by definition), we have to compute
the whole structure and then compute all the collections of similar con-
cepts. In [3], a parametrized method of factorization for data with fuzzy
attributes was presented. The similarity relation is induced by a threshold
(parameter of factorization, specified by a user) and computed from input
data. Then, the size of factor lattice depends on the threshold. The most
important part of the work is the presentation of an easy and fast way to
compute the (parametrized) factor concept lattice directly from input data
and a user-specified threshold. We also explore the use of factorization in
fuzzy concept lattices with hedges. The interesting aspect is discussed: the
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question of relationships between adjusting input data, modifying the forma-
tion of concepts and factorization of the structure of original concepts, since
each of these approaches leads to the same result – factor lattice. Beside
the theoretical insight, the indivisible and indispensable part constitute the
extensive experiments on small and middle-sized data tables from different
areas of human activity (demography, sociology).
The individual results contained in the thesis were presented at selected in-
ternational conferences and forums on FCA and data mining (ICCS, ICFCA,
IEEE, CLA, RASC) and published in significant and prestigious journals in
the area of data analysis and artificial intelligence research (JCSS, LNAI).
The developed data mining methods involving factorization in FCA are sup-
posed to be included as an important part of a slightly larger software, which
will, in broader range, implement more various methods regarding formal
concept analysis. The software should enable immediate usage and utiliza-
tion of FCA in practice.

This thesis is a summary of the joint research of me and my colleagues at De-
partment of Computer Science, Palacký University. First of all, my biggest
thanks go to my supervisor, prof. Radim Bělohlávek, who had friendly intro-
duced, has guided and still guides me through the fancy world of science and
university environment. Without his great help and leadership my research
would be hardly possible. Thank you for all your endless help and support!1

At the same time I would like to thank to me colleague and friend Vilém
Vychodil for the valuable help and assistance, peculiar to himself. Great
part of my thanks clearly belong to all the people, who helped me to fin-
ish this thesis and without whose support and tolerance it would hardly be
written up. To my parents and entire broad family for indispensable home
ground providing so important family peace and for their mental support.
The work is dedicated to my parents. I would like to thank my friends and
fellows for their endless patience and tolerance when I could not devote my
time to them and our common business as they deserve.

First pieces of the thesis began to arise nearly two and a half month ago in
Ghent, Belgium (thanks to prof. Bernard De Baets from Ghent University)
and now after quite hard work it is finished. But behind these few months
there are three years of scientific work and I invite you to see what was
within that time done!

Jan Outrata
Olomouc, October 2006

1And a bit of patience, I remember our first plans, back at Luxembourg, of finishing
the work a year earlier, but how many new results since then are included!
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Chapter 1

Problem setting

1.1 Introduction and motivation

Finding interesting and well-interpretable groups in data is a challenging
goal which concerns the mankind for several centuries. Formal concept anal-
ysis (FCA) is a method of exploratory data analysis which aims at extracting
a hierarchical structure of clusters from tabular data describing objects and
their attributes [27]. The history of FCA goes back to Wille’s paper [42],
theoretical foundations are gathered together in [27], algorithms and and a
survey of applications can be found in [22]. There appeared many interest-
ing applications of FCA as a data analysis method, see e.g. [1, 24, 38, 39],
as well as a method for data preprocessing for reduction of the search space,
see e.g. [41, 45].
Clusters in FCA are particular pairs 〈A, B〉 consisting of a collection A of
objects and a collection B of attributes which are maximal with respect to
the property that each object from A has every attribute from B. Since
this approach corresponds to Port-Royal idea of a concept consisting of its
extent (objects covered by the concept) and its intent (attributes covered by
the concept), clusters 〈A,B〉 are called formal concepts. Formal concepts
can be partially ordered by a subconcept-superconcept hierarchy (narrower
clusters are under larger ones). The resulting partially ordered set of clusters
forms a complete lattice (so-called concept lattice) and can be visualized by
a labelled Hasse diagram from which one can see various relationships valid
in the data. Alternatively, formal concepts can be thought of as maximal
rectangles contained in the object-attribute data table. In basic setting, the
input data table contains bivalent attributes, i.e. each table entry contains
either 0 or 1. More general attributes are handled by a so-called concep-
tual scaling, i.e. a suitable transformation of a general data table into a
0/1-data table which respects the meaning of attributes, see [27] for details.
FCA was also extended to data tables with fuzzy attributes (i.e. graded
attributes, like big or cheap, which apply to objects to intermediate degrees,
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not necessarily 0 or 1), where the table entries contain degrees to which a
particular attribute applies to a particular object. Then, the components
A and B of a formal concept 〈A,B〉 are fuzzy sets rather than bivalent
sets, corresponding well to the fact that objects and attributes are covered
by concepts to various degrees. There were proposed various extensions of
original (,,classical”) FCA, among the most known are approaches by Bur-
usco & Fuentes-Gonzales [20], Pollandt [37], Bělohlávek et al. [2], Krajči [34],
BenYahia et al. [43], . . . , see e.g. [19] for an overview. In this work we will use
and utilize approach independently proposed by Bělohlávek and Pollandt,
which we find the most appealing.
An important problem in applications of formal concept analysis is a possibly
large number of clusters extracted from data. Factorization is one of the
methods being used to cope with the number of clusters. In [3], a method of
parameterized factorization of concept lattices computed from data tables
with fuzzy attributes is presented. A user supplies a similarity threshold a
(parameter) and the method outputs, instead of the whole concept lattice
which might be large, its factor lattice. The elements of the factor lattice are
maximal blocks of clusters from the whole concept lattice which are pairwise
similar to degree at least a (where the similarity relation between clusters is
computed from them alone). The factor lattice is smaller than the original
concept lattice and its size depends on the similarity threshold. The elements
of the factor lattice are collections of clusters which are pairwise similar to
degree at least a. For a user, the factor lattice provides a coarser version of
the whole concept lattice—the less the similarity threshold a, the coarser.
The factor lattice thus represents a granularized view on the original concept
lattice. We present two algorithms for computing a factor lattice of a concept
lattice from the data and a user-specified similarity threshold a ([3, 10, 11]).
The main purpose is that the factor lattice is computed directly from data,
i.e. without the need to compute the whole concept lattice first. Hence the
method the algorithms implements are called fast and direct factorization
of fuzzy concept lattices of data with fuzzy attributes.
Recently, there have been proposed additional parametrized approaches to
reduce the number of clusters extracted from data with fuzzy attributes. It
seems that parameterized approaches are of interest, the parameters control
the number of the extracted formal concepts. First of the approaches con-
sists in introducing two additional parameters into FCA of data with fuzzy
attributes, see e.g. [19, 12, 14, 17]. These parameters, called hedges, are par-
ticular unary functions ∗X and ∗Y on the scale of truth degrees. The hedges
are used to modify the extent and intent forming operators associated to
formal context (input data table). Then, instead of original concept lattice,
one considers so-called concept lattice with hedges, which is defined to be the
set of fixed points of the modified operators. The basic idea is that stronger
hedges lead to smaller concept lattice with hedges. An interesting point here
is that the approach via hedges subsumes some of the earlier approaches to
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FCA of data with fuzzy attributes. First, if both hedges are identities, one
obtains the original approach by Pollandt and Bělohlávek [2, 37]. Second, if
only one of the hedges is identity and the other one is so-called globalization
(see later), the resulting concept lattice with hedges is in fact the so-called
one-sided fuzzy concept lattice considered independently in [15, 43, 34]. In
this work, we extend the results of fast factorization by similarity to the case
of fuzzy concept lattices with hedges.
The second of the additional parametrized approaches exploits the idea of
thresholds in FCA of data with fuzzy attributes, proposed in [25] and further
improved in [26]. The idea is basically the following. Instead of considering
the collection of all attributes shared by a collection of objects, it is intu-
itively appealing to pick a threshold δ and to consider a set of all attributes
shared to a degree greater than or equal to δ. This simple idea also leads
to parametrized reduction of the size of fuzzy concept lattice, with δ be-
ing the controlling parameter. With δ = 1, this approach is equivalent to
approaches proposed independently in [34, 43] mentioned above. In fact,
we will show, that the approach using hedges subsumes the approach using
thresholds.
Of course, there have been several other methods (either parametrized or
not) proposed to help to reduce/manage the size of a concept lattice. A
variety of methods is presented in [27]. Except of the above-mentioned fac-
torization, there are several methods of decomposition described in [27].
Decomposition methods aim at finding natural relationships between parts
of the concept lattice and corresponding substructures of the input data
table. For instance, substitution decomposition is a method based on fold-
ing/unfolding the concept lattice which can be visualized by a nested di-
agram. Other methods of decomposition include subdirect decomposition,
atlas decomposition, and tensorial decomposition (we omit details and refer
to [27]). A method applied right on the input side of FCA based on selection
(by user) of relevant attributes and dealing with only the corresponding part
of a concept lattice is presented in [23]. In [21], the authors face the prob-
lem of a large concept lattice by computing and visualizing only its relevant
local part which is used for browsing based on a user query. In [16], the
authors propose to use additional information which is often supplied with
the data table. Then, one can extract only those formal concepts which
are in a natural way compatible with the additional information. Finally,
an interesting approach of clustering of objects and attributes of the input
data table is presented in [36]. The clustering is done by removing similar
objects and attributes and has effect of clustering of formal concepts, but,
however, there are some glitches and unanswered questions.
In this work we take a look at two parametrized approaches to reduce the
size of a concept lattice mentioned above. First, the chapter 2 is devoted to
the parameterized factorization by similarity. The theory is supported by
extensive experiments. Second, the approach exploiting the idea of thresh-
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olds is examined and compared to the factorization approach in chapter 3,
which is therefore ment to be read after chapter 2. But before delving into
the theoretical treatise, we should reiterate the basic notions of fuzzy sets
and fuzzy logic and foundations of FCA of data with fuzzy attributes, at
least for reasons of unifying the terminology. This material is the subject of
the following section 1.2, as well as an introduction to factorization of fuzzy
concept lattices by similarity (including illustrative example).

1.2 Preliminaries

1.2.1 Fuzzy sets and fuzzy logic

We first recall the necessary notions from fuzzy sets and fuzzy logic. Only
the notions used further in the text will be recalled, for further details we
refer to [7, 30]. From (intuitive) theory of sets we know that an element
either belongs to a set or not. The concept of a fuzzy set generalizes that of
an (ordinary) set in that an element may belong to a fuzzy set to an interme-
diate degree, not only 0 (does not belong) or 1 (does belong). This enables
us to model vaguely (nonsharply) delineated collections: for instance, the
collection corresponding to linguistic label “bald man” can be modelled by
a fuzzy set to which a man having no hair at all belongs to degree 1 (i.e. is
bald), a man with a bit of remaining hair at the back and around ears be-
longs to degree 0.8 (is almost bald), a man with a small circle area without
hair on top of head belongs to degree 0.3 (is almost not bald), whilst a man
with a fleece way long down to his waist certainly belongs to degree 0 (is
not bald at all). Formally, a fuzzy set A in a universe U [33] is a mapping
assigning to each u ∈ U a truth degree A(u) ∈ L where L is some partially
ordered set of truth degrees containing at least 0 (full false) and 1 (full true),
see below. Usually, L is the unit interval [0, 1] of real numbers or some of
its subsets. A(U) is then interpreted as a degree to which u belongs to A.
To be able to work with fuzzy sets (similarly as with ordinary sets), the scale
L of truth degrees needs to be equipped with suitable operations generalizing
logical connectives of classical (bivalent, 0/1) logic. Particularly, we will need
fuzzy conjunction ⊗ and fuzzy implication →. By natural requirements on
conjunction and implication [28], the two connectives should be related. The
set of truth degrees equipped with the logical connectives forms a so-called
structure of truth degrees. In our work we assume that the structure forms
a so-called complete residuated lattice L = 〈L,∧,∨,⊗,→, 0, 1〉, where

(i) 〈L,∧,∨, 0, 1〉 is a complete lattice (with the least element 0 and the
greatest element 1), i.e. a partially ordered set in which arbitrary
infima (

∧
, serving as general quantifier in semantics) and suprema

(
∨

, existential quantifier in semantics) exist,

(ii) 〈L,⊗, 1〉 is a commutative monoid with unit element 1, i.e. ⊗ satisfies
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x⊗(y⊗z) = (x⊗y)⊗z (associativity), x⊗y = y⊗x (commutativity),
and x⊗ 1 = x (1 acts as a unit) and

(iii) ⊗ and → satisfy x ⊗ y ≤ z if and only if x ≤ y → z, the property
called adjointness, which comes from the rule of entailment “modus
ponens”).

Elements x of L are called truth degrees and ⊗ and → are called multi-
plication and residuum and play the role of fuzzy conjunction and fuzzy
implication, respectively. By the adjointness property we have many im-
portant properties of ⊗ and → like monotonicity (⊗ is monotone in both
arguments and → is monotone in second argument and antitone in first ar-
gument) or characterization of ≤ (a ≤ b iff a → b = 1). Thorough the work,
we will take advantage of several other properties ⊗ and → (see [7, 30] for
a survey).
As stated before, the most applied set L of truth degrees is the real unit
interval [0, 1], equipped with a ∧ b = min(a, b), a ∨ b = max(a, b) and with
one of the three important pairs of fuzzy conjunction and fuzzy implication:

• ÃLukasiewicz: a⊗ b = max(a + b− 1, 0), a → b = min(1− a + b, 1),

• minimum (Gödel): a⊗ b = min(a, b), a → b = 1 if a ≤ b and = b else
and

• product (Goguen): a⊗ b = a · b, a → b = 1 if a ≤ b and = b/a else.

A complete residuated lattice on [0, 1] with ∧ and ∨ being minimum and
maximum and ⊗ and → defined by one of the pairs of fuzzy conjunction
and fuzzy implication is called a standard ÃLukasiwicz, Goguen, and Gödel
algebra, respectively.
In real-life computing and applications we usually work with finite struc-
tures (especially linearly ordered), from obvious reasons of computational
tractability. So as a structure of truth degrees we take a finite chain {a0 =
0, a1, . . . , an = 1} (a0 < · · · < an) equipped with ÃLukasiewicz connectives
(ak ⊗ al = amax(k+l−n,0), ak → al = amin(n−k+l,n)) or minimum connectives
(ak ⊗ al = amin(k,l), ak → al = an for ak ≤ al and ak → al = al otherwise).
Such structures are then called finite ÃLukasiewicz and Gödel chains, respec-
tively. More generally we can take a subset of {a0 = 0, a1, . . . , an = 1} with
appropriately defined pair of fuzzy conjunction and fuzzy implication. Note
that for L = {0, 1}, there exists exactly one complete residuated lattice L –
the two-element Boolean algebra, which is the structure of truth degrees of
the classical (Boolean) logic.
The structure of truth degrees plays a crucial role in fuzzy logic since it
carries all information about truth degrees and fuzzy logical operations.
Complete residuated lattices cover entire classes of structures including the
most widely used structures with logical operations like the minimum-based,
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ÃLukasiewicz-based and many other (nonlinear and/or finite) structures used
in applications. Complete residuated lattices are thus basic general struc-
tures of truth degrees used in fuzzy logic, see [28, 30, 29].
In addition to fuzzy conjunction and fuzzy implication we will use also
another fuzzy operation. For a complete residuated lattice L, a (truth-
stressing) hedge is a unary function ∗ satisfying

(i) 1∗ = 1,

(ii) a∗ ≤ a,

(iii) (a → b)∗ ≤ a∗ → b∗ and

(iv) a∗∗ = a∗, for all a, b ∈ L.

These properties have natural interpretations leading to that a hedge ∗ acts
as a logical connective “very true” [31]. Hedges are monotone mappings,
for general L there are several of them among which, by pointwise ordering,
the largest hedge is identity (a∗ = a for each a ∈ L), the least hedge is
globalization[40] which is defined by a∗ = 1 for a = 1 and a∗ = 0 for a < 1.
However, for L = {0, 1} (two-element Boolean algebra) there exists the only
hedge and it is the identity and globalization in the same time. In the work
we will use as the structures of truth degrees complete residuated lattices,
possibly with hedge(s).
Now we recall basic notions of fuzzy sets and fuzzy relations. A fuzzy set
with truth degrees from L in a universe U (which is an ordinary set) is a
mapping A : U → L assigning to any element u ∈ U a truth degree A(u) ∈ L
to which u belongs to A. The truth degree A(u) ∈ L is usually called the
membership degree of u in A. If U = {u1, . . . , un} then A is denoted by
A = { a1

/
u1, . . . , an

/
un} meaning that A(ui) equals ai. For brevity, we

omit elements of U whose membership degree is zero and do not write down
the truth degree of 1 (i.e. {x} = { 1/

x}). Fuzzy sets are sometimes called
also L-sets to emphasize the structure L of truth degrees. The set of all
L-sets in a universe U is denoted LU (in accordance to denoting by 2U the
set of all ordinary subsets of U). The operations with fuzzy sets are defined
componentwise as usual. For instance, the intersection of fuzzy sets A,B
in U is a fuzzy set A ∩ B in U such that, for each u ∈ U , (A ∩ B)(u) =
A(u)∧B(u). For a fuzzy set A ∈ LU and a truth degree a ∈ L we denote by
aA the (so-called) a-cut of A, i.e. aA = {u ∈ U |A(u) ≥ a}. Thus a-cut of
A ∈ LU is an ordinary set of elements from U which belong to A to degree
at least a. A fuzzy set a → A in U defined by (a → A)(u) = a → A(u) is
called an a-shift of A. a-shift of a fuzzy set A has an effect of ,,shifting” (the
membership degree of elements of) A towards the unit 1. In particular the
membership degree of all elements of U which belong to A to degree at least
a is shifted to 1, producing a thresholded fuzzy set of A by a. Similarly we
define a fuzzy set a⊗A by (a⊗A)(u) = a⊗A(u), though without additional
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meaning. A fuzzy set A is called crisp if A(u) ∈ {0, 1}, i.e. an element u
either (fully) belongs to A or (fully) not belongs to A, i.e. following common
usage we will identify crisp fuzzy sets in U with ordinary subsets of U . The
subsethood of fuzzy sets can be defined either the similar way as for ordinary
sets (crisp subsethood), i.e. for fuzzy sets A,B in U we put A ⊆ B (A is
a subset of B) if for each u ∈ U we have A(u) ≤ B(u); or more generally
in fuzzy fashion (graded subsethood, the degree of subsethood): the degree
S (A,B) to which A is a subset of B is defined by

S (A,B) =
∧

u∈U

(
A(u) → B(u)

)
.

Then, A ⊆ B is equivalent to S (A,B) = 1 which is the case when A(u) ≤
B(u) for each u ∈ U (A is fully contained in B). A (binary) fuzzy (L-
) relation I between (ordinary) sets X and Y is a fuzzy set in universe
U = X × Y , i.e. a mapping I : X × Y → L assigning to any two elements
x ∈ X and y ∈ Y a truth degree I(x, y) ∈ L to which x and y are related
under I. As fuzzy relations are but fuzzy sets, all previous notions for fuzzy
sets apply also to fuzzy relations.

1.2.2 Formal concept analysis of data with fuzzy attributes

Let X be a non-empty finite set of objects, Y be a non-empty finite set
of attributes and I be a (binary) L-relation between X and Y , i.e. I is a
mapping I : X×Y → L. Formal fuzzy context (in terms of FCA) is a triplet
〈X,Y, I〉 and represents a table which assigns to each object x ∈ X and each
attribute y ∈ Y a truth degree I(x, y) ∈ L to which object x has attribute
y. A formal fuzzy context 〈X,Y, I〉 can be seen as a data table with fuzzy
attributes with rows corresponding to objects, columns corresponding to at-
tributes, and table entries filled with truth degrees I(x, y) for corresponding
row x and column y. For L = {0, 1}, formal fuzzy contexts can be identified
in an obvious way with ordinary (two-valued) formal contexts (see [27] for
foundations and applications of “classical” FCA).
For L-set A ∈ LX of objects, L-set B ∈ LY of attributes we define L-sets
A⇑ ∈ LY (L-set of attributes) and B⇓ ∈ LX (L-set of objects) by

A⇑(y) =
∧

x∈X

(
A(x) → I(x, y)

)
, (1.1)

B⇓(x) =
∧

y∈Y

(
B(y) → I(x, y)

)
(1.2)

(sometimes denoted also A⇑I and B⇓I to make I explicit). Using basic rules
of predicate fuzzy logic, A⇑ can be read as “a fuzzy set of all attributes
common to all objects from A”, and similarly B⇓ as “a fuzzy set of all
objects sharing all attributes from B”. Operators ⇓, ⇑ induced by 〈X, Y, I〉
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form a fuzzy Galois connection [7] and were extensively studied [6, 8, 37].
The set of all fixed points of ⇓, ⇑

B (X,Y, I) = {〈A,B〉 ∈ LX × LY |A⇑ = B, B⇓ = A}, (1.3)

together with a binary ordering relation ≤ defined for 〈A1, B1〉, 〈A2, B2〉 ∈
B (X,Y, I) by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 or equivalently, iff B2 ⊆ B1

is called a fuzzy concept lattice induced by 〈X, Y, I〉, denoted 〈B (X, Y, I) ,≤〉.
Elements 〈A,B〉 of B (X, Y, I) are called (formal) fuzzy concepts and are
interpreted as (interesting) clusters hidden in the input data table. Namely,
the conditions A⇑ = B and B⇓ = A from the definition of formal concept
say that “B is the collection of all attributes shared by all objects from
A, and A is the collection of all objects sharing all attributes from B”.
Note that these conditions represent exactly the definition of a concept as
developed in Port-Royal logic; A and B are called extent and intent of the
concept 〈A,B〉, respectively, and represent the collection of all objects and
all attributes covered by the particular concept. The ordering relation ≤ on
concepts is the subconcept-superconcept hierarchy, where concept 〈A1, B1〉
is a subconcept of 〈A2, B2〉 iff each object from A1 belongs to A2 and, dually
for attributes, iff each attribute from B2 belongs to B1. In other words, a
subconcept has fewer objects and more attributes than the superconcept.
Note also that for L = {0, 1} (two truth degrees; bivalent case), the notions
of formal fuzzy context, fuzzy concept, and fuzzy concept lattice coincide
with the ordinary (crisp) notions in “classical” FCA [27].
As a set of fixed points of ⇓, ⇑ ordered under ≤, 〈B (X,Y, I) ,≤〉 is a complete
lattice, see [3, 8] for further information on its basic properties and study of
its structure. The following is the characterization of the structure (so-called
main theorem of fuzzy concept lattices):

Theorem 1 The set B (X, Y, I) is under ≤ a complete lattice where infima
and suprema are given by

∧

j∈J

〈Aj , Bj〉 = 〈
⋂

j∈J

Aj , (
⋃

j∈J

Bj)⇓⇑〉, (1.4)

∨

j∈J

〈Aj , Bj〉 = 〈(
⋃

j∈J

Aj)⇑⇓,
⋂

j∈J

Bj〉. (1.5)

Moreover, an arbitrary complete lattice V = 〈V,∧,∨〉 is isomorphic to some
B (X,Y, I) iff there are mappings γ : X × L → V , µ : Y × L → V such that

(i) γ(X, L) is
∧

-dense in V,

(ii) µ(Y,L) is
∨

-dense in V and
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(iii) a⊗ b ≤ I(x, y) iff γ(x, a) ≤ µ(y, b).

Recall that K is
∧

-dense in V if each v ∈ V is a infimum of some subset
of K (and dually for

∨
-density). The lattice structure of B (X, Y, I) says

that each set of concepts has its direct generalization (supremum) and its
direct specialization (infimum) in B (X, Y, I). In addition to B (X, Y, I), we
denote by Ext(I) = {A | 〈A,B〉 ∈ B (X, Y, I) for some B} the set of extents
of concepts and by Int(I) = {B | 〈A,B〉 ∈ B (X, Y, I) for some A} the set
of intents of concepts. Note that Ext(I) and Int(I) are complete lattices
isomorphic or dually isomorphic, respectively, to B (X, Y, I).
Now, let ∗X and ∗Y be (truth-stressing) hedges. For L-sets A ∈ LX and
B ∈ LY , consider L-sets A↑ ∈ LY and B↓ ∈ LX defined by

A↑(y) =
∧

x∈X

(A∗X (x) → I(x, y)), (1.6)

B↓(x) =
∧

y∈Y

(B∗Y (y) → I(x, y)). (1.7)

Then, A↑ is “a fuzzy set of all attributes common to all objects for which it is
very true that they are from A”, and B↓ is “a fuzzy set of all objects sharing
all attributes for which it is very true that they are from B”. Operators
↑ and ↓ were introduced in [12, 17] as a parameterization (by hedges) of
operators 1.1 and 1.2. Clearly, if both ∗X and ∗Y are identities on L, ↑ and
↓ coincide with ⇑ and ⇓, respectively. To simplify writing and emphasizing
this special case, if ∗X or ∗Y is the identity on L, we omit ∗X or ∗Y in
B (X∗X , Y ∗Y , I), e.g. we write just B (X∗X , Y, I) if ∗Y = idL.
The set of all fixed points of ↓, ↑

B (X∗X , Y ∗Y , I) = {〈A,B〉 ∈ LX × LY |A↑ = B, B↓ = A}, (1.8)

together with analogical binary ordering relation ≤ as above defined for
〈A1, B1〉, 〈A2, B2〉 ∈ B (X∗X , Y ∗X , I) by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 or equivalently, iff B2 ⊆ B1

is again called a fuzzy concept lattice (with hedges) of 〈X, Y, I〉 and the el-
ements 〈A,B〉 ∈ B (X∗X , Y ∗Y , I) (formal) fuzzy concepts. For the sake of
brevity, we will sometimes write also B (X∗, Y ∗, I) instead of B (X∗X , Y ∗Y , I).
〈B (X∗X , Y ∗Y , I) ,≤〉 also happens to be a complete lattice and we refer to
[17] for results describing its structure (main theorem of fuzzy concept lat-
tices with hedges). B (X∗X , Y ∗Y , I) is the basic structure used for formal
concept analysis of the data table (with fuzzy attributes) represented by
〈X,Y, I〉.
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1.2.3 Factorization by similarity

Finally, we recall the parametrized method of factorizationof fuzzy concept
lattice introduced in [3] to which we refer for details. Briefly, given a data
table (formal fuzzy context) 〈X, Y, I〉, introduce a binary fuzzy relation ≈
on the set B (X, Y, I) of all formal concepts of 〈X, Y, I〉 by

(〈A1, B1〉 ≈ 〈A2, B2〉) =
∧

x∈X

(A1(x) ↔ A2(x)) (1.9)

for 〈Ai, Bi〉 ∈ B (X,Y, I), i = 1, 2. Here, ↔ is a connective of fuzzy equiv-
alence (so-called biresiduum) defined by a ↔ b = (a → b) ∧ (b → a). It is
known (and is easily seen) that ≈ is a fuzzy equivalence relation, i.e. we
have (A ≈ A) = 1 (reflexivity), (A1 ≈ A2) = (A2 ≈ A1) (symmetry), and
(A1 ≈ A2) ⊗ (A2 ≈ A3) ≤ (A1 ≈ A3) (transitivity). 〈A1, B1〉 ≈ 〈A2, B2〉
is called the degree of similarity of 〈A1, B1〉 and 〈A2, B2〉. It is easily seen
(again, using basic rules of predicate fuzzy logic) that it is the truth degree
of “for each object x ∈ X: x is covered by A1 iff x is covered by A2”.
One can show [3] that defining ≈ over objects is equivalent to defining over
attributes, i.e. (〈A1, B1〉 ≈ 〈A2, B2〉) =

∧
y∈Y (B1(y) ↔ B2(y)). As a conse-

quence, we don’t have to distinguish the definitions of ≈ over objects and
over attributes and write just ≈. The equivalence says that measuring sim-
ilarity of formal concepts via extents Ai coincides with measuring similarity
via intents Bi, corresponding to the duality of the extent/intent view on
concepts.
Given a truth degree a ∈ L (threshold specified by a user), consider the
thresholded relation a≈ on B (X, Y, I) defined by

(〈A1, B1〉, 〈A2, B2〉) ∈ a≈ iff (〈A1, B1〉 ≈ 〈A2, B2〉) ≥ a. (1.10)

That is, a≈ is the (crisp) relation “being similar to degree at least a” and
we thereby call it simply similarity (relation). a≈ is reflexive and symmetric
(i.e., a tolerance relation), but need not be transitive (it is transitive if a⊗b =
a∧b holds true in L). A similarity a≈ on B (X,Y, I) is said to be compatible
if it is preserved under arbitrary suprema and infima in B (X, Y, I), i.e. if
cj

a≈c′j , implies both (
∧

j∈J cj)a≈(
∧

j∈J c′j) and (
∨

j∈J cj)a≈(
∨

j∈J c′j) for any
cj , c

′
j ∈ B (X, Y, I), j ∈ J . We call ≈ compatible if a≈ is compatible for each

a ∈ L.
Call a subset B of B (X, Y, I) a a≈-block if it is a maximal subset of B (X, Y, I)
such that each two formal concepts from B are similar to degree at least a.
Thus, the notion of a a≈-block generalizes that of an equivalence class: if a≈
is an equivalence relation (i.e. a≈ is transitive), a≈-blocks are exactly the
equivalence classes. Denote by B (X, Y, I) /a≈ the collection of all a≈-blocks.
It can be shown that, if a≈ is compatible, then a≈-blocks are special intervals
in the concept lattice B (X, Y, I) [3, 27]. In detail, for a formal concept
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〈A,B〉 ∈ B (X,Y, I), put

〈A,B〉a :=
∧
{〈A′, B′〉 | (〈A, B〉, 〈A′, B′〉) ∈ a≈}, (1.11)

〈A,B〉a :=
∨
{〈A′, B′〉 | (〈A, B〉, 〈A′, B′〉) ∈ a≈}. (1.12)

That is, 〈A, B〉a and 〈A,B〉a are the infimum and the supremum of the
set of all formal concepts which are similar to 〈A,B〉 to degree at least a.
Operators . . .a and . . .a are important in description of a≈-blocks [27]:

Lemma 2 a≈-blocks are exactly intervals of B (X, Y, I) of the form
[〈A,B〉a, (〈A, B〉a)a], i.e.

B (X, Y, I) /a≈ = {[〈A,B〉a, (〈A,B〉a)a] | 〈A,B〉 ∈ B (X,Y, I)}.

Note that an interval with lower bound 〈A1, B1〉 and upper bound 〈A2, B2〉
is the subset

[〈A1, B1〉, 〈A2, B2〉] = {〈A,B〉 | 〈A1, B1〉 ≤ 〈A,B〉 ≤ 〈A2, B2〉}.

Now, define a partial order ¹ on blocks of B (X, Y, I) /a≈ by

[c1, c2] ¹ [d1, d2] iff c1 ≤ d1 (iff c2 ≤ d2)

where [c1, c2], [d1, d2] ∈ B (X,Y, I) /a≈ (ci ≤ di denotes that in B (X, Y, I),
ci is a subconcept of di). Then we have

Theorem 3 B (X, Y, I) /a≈ equipped with ¹ is a partially ordered set which
is a complete lattice, the so-called factor lattice of B (X,Y, I) by similarity
≈ and a threshold a.

Generally, B (X, Y, I) /a≈ is a factor lattice of B (X, Y, I) by a compatible
tolerance relation a≈ on B (X,Y, I) (see e.g. [27] for the notion of a factor
lattice by a tolerance). Elements of B (X, Y, I) /a≈ can be seen as similarity-
based granules of formal concepts from B (X, Y, I). B (X, Y, I) /a≈ thus pro-
vides a granular view on (a possibly large) B (X, Y, I). Note also that if a≈ is
transitive then it is a congruence relation on B (X,Y, I) and B (X,Y, I) /a≈
is the usual factor lattice modulo a congruence. For further details and
properties of B (X, Y, I) /a≈ we refer to [3].
We now present an illustrative example. Consider the data table depicted
in Tab. 1.1. The data table describes 25 countries of EU (objects from X)
by some of their demographic and economic characteristics (attributes from
Y ). The data was obtained from the study “Czech Republic in European
Union: benefits and costs” of Consortium for study of international relations
(2004, in Czech, downloadable from http://www.evropska-unie.cz). The
original values of the characteristics are scaled to interval [0, 1] so that the
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Table 1.1: Data table of EU countries, 3 truth degrees.

a b c d e
1 Austria 0 0 1

2 1 1
2 Belgium 0 0 1

2 1 1
2

3 Cyprus 0 0 1
2 1 1

4 Czech rep. 0 0 0 1
2

1
2

5 Denmark 0 0 1
2 1 1

6 Estonia 0 0 0 1
2

1
2

7 Finland 0 1
2

1
2 1 1

2
8 France 1

2 1 1
2 1 1

2
9 Germany 1 1

2
1
2 1 1

2
10 Greece 0 0 0 1

2
1
2

11 Hungary 0 0 0 0 1
12 Ireland 0 0 1

2
1
2 1

13 Italy 1
2

1
2

1
2 1 1

2
14 Latvia 0 0 0 1 1

2
15 Lithuania 0 0 0 1 0
16 Luxembourg 0 0 1 1 1
17 Malta 0 0 0 1 1

2
18 Netherlands 0 0 1

2
1
2 1

19 Poland 1
2

1
2 0 1

2 0
20 Portugal 0 0 0 1

2 1
21 Slovakia 0 0 0 0 0
22 Slovenia 0 0 1

2 0 1
23 Spain 1

2 1 1
2 1 1

2
24 Sweden 0 1 1

2 1 1
25 UK 1

2
1
2

1
2 1 1

attributes: a – many habitants (millions), b – large area (thousands km2),
c – high GDP (EUR), d – low inflation (%), e – low unemployment (%)
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characteristics can be considered as fuzzy attributes with truth degrees from
three element chain L = {0, 1

2 , 1}.
The corresponding concept lattice computed using ÃLukasiewicz fuzzy logical
operations is depicted in Fig. 1.1 and all formal fuzzy concepts of it are listed
in 1.2.
For a = 1

2 there are ten
1
2≈-blocks and they are depicted in Fig. 1.2 (blocks

are highlighted by solid lines) together with the corresponding factor lattice
B (X, Y, I) /

1
2≈.
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Figure 1.1: Concept lattice B (X, Y, I) of data table from Tab. 1.1.
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Table 1.2: Concepts of data table from Tab. 1.1.

extent intent
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1
2 1 1

2 1 1 1 1 0 0 0 0 1
2

3 1 1
2 1 1

2 1 1
2

1
2

1
2

1
2

1
2 1 1 1

2
1
2 0 1 1

2 1 0 1 0 1 1
2 1 1 0 0 0 0 1

4 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1

2
1
2 1 1 1 0 0 0 1

2 0
5 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1
2 1 1 1 1

2 1 1
2

1
2 1 1 1 0 0 0 1

2
1
2

6 1 1
2 1 1

2 1 1
2

1
2

1
2

1
2

1
2

1
2 1 1

2
1
2 0 1 1

2 1 0 1 0 1
2

1
2 1 1 0 0 0 1

2 1
7 1 1 1 1

2 1 1
2 1 1 1 1

2 0 1
2 1 1 1 1 1 1

2
1
2

1
2 0 0 1 1 1 0 0 0 1 0

8 1 1 1 1
2 1 1

2 1 1 1 1
2 0 1

2 1 1 1
2 1 1 1

2
1
2

1
2 0 0 1 1 1 0 0 0 1 1

2
9 1 1 1 1

2 1 1
2 1 1 1 1

2
1
2 1 1 1

2
1
2 1 1

2 1 1
2

1
2

1
2 1 1 1 1 0 0 1

2 0 1
2

10 1 1
2 1 1

2 1 1
2

1
2

1
2

1
2

1
2

1
2 1 1

2
1
2 0 1 1

2 1 0 1
2 0 1 1

2 1 1 0 0 1
2 0 1

11 1 1 1 1
2 1 1

2 1 1 1 1
2

1
2 1 1 1

2
1
2 1 1

2 1 1
2

1
2

1
2

1
2 1 1 1 0 0 1

2
1
2

1
2

12 1 1
2 1 1

2 1 1
2

1
2

1
2

1
2

1
2

1
2 1 1

2
1
2 0 1 1

2 1 0 1
2 0 1

2
1
2 1 1 0 0 1

2
1
2 1

13 1 1 1 1
2 1 1

2 1 1 1 1
2 0 1

2 1 1
2

1
2 1 1

2
1
2

1
2

1
2 0 0 1 1 1 0 0 1

2 1 1
2

14 1 1
2 1 1

2 1 1
2

1
2

1
2

1
2

1
2 0 1

2
1
2

1
2 0 1 1

2
1
2 0 1

2 0 0 1
2 1 1 0 0 1

2 1 1
15 1

2
1
2

1
2 0 1

2 0 1
2

1
2

1
2 0 0 1

2
1
2 0 0 1 0 1

2 0 0 0 1
2

1
2

1
2

1
2 0 0 1 1

2 1
16 1

2
1
2

1
2 0 1

2 0 1
2

1
2

1
2 0 0 1

2
1
2 0 0 1 0 1

2 0 0 0 0 1
2

1
2

1
2 0 0 1 1 1

17 1
2

1
2

1
2

1
2

1
2

1
2 1 1 1 1

2
1
2

1
2 1 1

2
1
2

1
2

1
2

1
2 1 1

2
1
2

1
2 1 1 1 0 1

2 0 1
2 0

18 1
2

1
2

1
2

1
2

1
2

1
2 1 1 1 1

2
1
2

1
2 1 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 1 1 1 0 1

2
1
2

1
2

1
2

19 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 1

2
1
2

1
2 0 1

2 0 1
2

1
2 1 1 0 1

2
1
2

1
2 1

20 1
2

1
2

1
2

1
2

1
2

1
2 1 1 1 1

2 0 1
2 1 1

2
1
2

1
2

1
2

1
2

1
2

1
2 0 0 1 1 1 0 1

2
1
2 1 1

2
21 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 1

2
1
2

1
2 0 1

2
1
2

1
2 0 1

2 0 0 1
2 1 1 0 1

2
1
2 1 1

22 0 0 0 0 0 0 1
2 1 1

2 0 0 0 1
2 0 0 0 0 0 1

2 0 0 0 1 1 1
2 0 1 1

2 1 1
2

23 0 0 0 0 0 0 1
2

1
2

1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0 1
2 1 1

2 0 1 1
2 1 1

24 1
2

1
2

1
2

1
2

1
2

1
2

1
2 1 1 1

2
1
2

1
2 1 1

2
1
2

1
2

1
2

1
2 1 1

2
1
2

1
2 1 1

2 1 1
2

1
2 0 1

2 0
25 1

2
1
2

1
2

1
2

1
2

1
2

1
2 1 1 1

2
1
2

1
2 1 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 1 1

2 1 1
2

1
2

1
2

1
2

1
2

26 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 1

2
1
2

1
2 0 1

2 0 1
2

1
2

1
2 1 1

2
1
2

1
2

1
2 1

27 1
2

1
2

1
2

1
2

1
2

1
2

1
2 1 1 1

2 0 1
2 1 1

2
1
2

1
2

1
2

1
2

1
2

1
2 0 0 1 1

2 1 1
2

1
2

1
2 1 1

2
28 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 1

2
1
2

1
2 0 1

2
1
2

1
2 0 1

2 0 0 1
2

1
2 1 1

2
1
2

1
2 1 1

29 1
2

1
2

1
2 0 1

2 0 1
2

1
2

1
2 0 0 1

2
1
2 0 0 1

2 0 1
2 0 0 0 1

2
1
2

1
2

1
2

1
2

1
2 1 1

2 1
30 1

2
1
2

1
2 0 1

2 0 1
2

1
2

1
2 0 0 1

2
1
2 0 0 1

2 0 1
2 0 0 0 0 1

2
1
2

1
2

1
2

1
2 1 1 1

31 0 0 0 0 0 0 1
2 1 1

2 0 0 0 1
2 0 0 0 0 0 1

2 0 0 0 1 1
2

1
2

1
2 1 1

2 1 1
2

32 0 0 0 0 0 0 1
2

1
2

1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0 1
2

1
2

1
2

1
2 1 1 1 1

33 0 0 0 0 0 0 0 1
2 1 0 0 0 1

2 0 0 0 0 0 1
2 0 0 0 1

2 0 1
2 1 1

2
1
2 1 1

2
34 0 0 0 0 0 0 0 1

2
1
2 0 0 0 1

2 0 0 0 0 0 1
2 0 0 0 1

2 0 1
2 1 1 1

2 1 1
2

35 0 0 0 0 0 0 0 1
2

1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0 1
2 0 1

2 1 1 1 1 1
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Figure 1.2:
1
2≈-blocks of concept lattice of Fig. 1.1 and the corresponding

factor lattice B (X,Y, I) /
1
2≈ (bottom right).



Chapter 2

Factorizing fuzzy concept
lattices by a≈

2.1 Introduction

In section 1.1 there was introduced a method of parameterized factorization
of concept lattices from data tables with fuzzy attributes. The factorization
is by the similarity relation a≈ determined by a user-specified threshold a
and was in short described in section 1.2.3. In order to compute the factor
lattice (quite easily) directly by definition presented there, we have to (1)
compute the whole concept lattice and then (2) to compute all the similarity
blocks, i.e. elements of the factor lattice. For computation of an ordinary
concept lattice from binary input data there exist dozens of algorithms with
quite varying, but polynomial time delay, see [35] for survey and comparison.
Without surprise, a fuzzy concept lattice can be computed by an algorithm
with a polynomial time delay as well, see [9] for an algorithm which we
will use and which is described in the following section. Finding all the
similarity blocks can of course also be accomplished by an algorithm with
polynomial time delay, concluding that computing the factor lattice directly
by definition we get it in time polynomial to the size of input data table.
Well, although polynomial time delay is fine, the computation of the whole
possibly large concept lattice and, especially, factorizing this lattice, can be
quite time demanding. And, realizing that we compute the whole concept
lattice only in order to obtain the smaller factor lattice, also somewhat
frustrating. Fortunately, the following sections show that we can avoid it!
We present two ways to compute the factor lattice directly from input data,
without first computing the whole concept lattice and then computing the
collections (similarity blocks) of concepts. First way (sometimes called fast
factorization, presented in section 2.2.1) goes through describing a new
(fuzzy) closure operator the fixed points of which are just concepts which
uniquely determine the blocks of similar concepts. Then any algorithm com-
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puting all fixed points of a closure operator does the rest. The second way
(called direct factorization, presented in section 2.2.2) is somehow similar.
Instead of forming new closure operator on original input data, we appro-
priately modify the input data table so that the concepts computed from
such a modified table, using any algorithm for computing a fuzzy concept
lattice, again uniquely determine the blocks of similar concepts, i.e. the
elements of factor lattice. The resulting algorithms are indeed significantly
faster than computing first the whole concept lattice and then computing
the similarity blocks.1 Furthermore, the smaller the similarity threshold,
the faster the computation of the factor lattice. The feature, which the
two-step computation directly by definition does not guarantee (as we will
see in experiments), but which straightly corresponds to a rule “the more
tolerance to imprecision, the faster the result” which is so characteristic for
human categorization.
The previous paragraphs apply to parametrized factorization of fuzzy con-
cept lattices as defined by (1.3). However, in preliminaries (section 1.2.1),
we introduced hedges, so in section 2.3 we look to what extent the idea of
factorization by a≈ can be applied to fuzzy concept lattices with hedges,
defined by (1.8).
The important part of the chapter constitutes the section 2.4, which sum-
marizes the extensive examples and experiments supporting our methods
of factorization and demonstrating the significant speed-up. Finally, sec-
tion 2.5 concludes and presents an outline of a future research.

The chapter summarizes results contained in [10] (section 2.2.1), [11] (sec-
tion 2.2.2) and recent [13] (section 2.3).

2.2 Computing the factor lattice B (X, Y, I) /a≈ di-
rectly from input data

2.2.1 New fuzzy closure operator

In order to compute B (X, Y, I) /a≈ using definition and Lemma 2, one has
(1) to compute the whole concept lattice B (X,Y, I) and then (2) to com-
pute a≈-blocks on B (X,Y, I), which can be quite time demanding. We are
going to propose a way to compute B (X, Y, I) /a≈ directly from input data
〈X, Y, I〉.

We need some auxiliary results. For basic properties of concept lattices in
fuzzy setting we refer to [3, 8]. For fuzzy sets C, D in U , put

(C ≈ D) =
∧

u∈U

(
C(u) ↔ D(u)

)
.

1This is all about, of course.
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Furthermore, we call a fuzzy set A in X an extent if there is a fuzzy set B
in Y such that 〈A,B〉 ∈ B (X, Y, I) (similarly, B is an intent if there is A
with 〈A, B〉 ∈ B (X, Y, I)).

Lemma 4 If A is an extent then so is a → A; similarly, if B is an intent
then so is a → B.

PROOF. We prove the assertion for extents. Let A be an extent, i.e.
〈A,B〉 ∈ B (X, Y, I) for some B. We have to show that 〈a → A,B′〉 ∈
B (X, Y, I). It suffices to show that a → A = (a → A)⇑⇓ (since then 〈a →
A, (a → A)⇑〉 is a formal concept). Since a → A ⊆ (a → A)⇑⇓ is always the
case, we have to show (a → A)⇑⇓ ⊆ a → A which holds iff (a → A)⇑⇓(x) ≤
a → A(x) for each x ∈ X. Using adjointness, the latter is equivalent to
a ≤ (a → A)⇑⇓(x) → A(x). Since

(a → A)⇑⇓(x) → A(x) ≥
∧

x∈X

(
(a → A)⇑⇓(x) ↔ A(x)

)
=

= ((a → A)⇑⇓ ≈ A),

it suffices to show a ≤ ((a → A)⇑⇓ ≈ A). First, we have a ≤ ((a → A) ≈ A).
Indeed, from a ≤ ((a → A(x)) → A(x)) and a ≤ (A(x) → (a → A(x)))
for each x ∈ X we have a ≤ ((a → A(x)) ↔ A(x)) for each x ∈ X, i.e.
a ≤ ∧

x∈X((a → A(x)) ↔ A(x)) = ((a → A) ≈ A). Furthermore, since
(A1 ≈ A2) ≤ (A⇑1 ≈ A⇑2 ) and (B1 ≈ B2) ≤ (B⇓

1 ≈ B⇓
2 ) for A1, A2 ∈ LX and

B1, B2 ∈ LY (see [3]), we have (A1 ≈ A2) ≤ (A⇑1 ≈ A⇑2 ) ≤ (A⇑⇓1 ≈ A⇑⇓2 ).
Putting this together, we get a ≤ ((a → A) ≈ A) ≤ ((a → A)⇑ ≈ A⇑) ≤
((a → A)⇑⇓ ≈ A⇑⇓), completing the proof. ¤

The next lemma shows that for a formal concept 〈A,B〉, 〈A,B〉a and 〈A,B〉a,
defined by (1.11) and (1.12) as infimum and supremum of all formal concepts
similar to 〈A,B〉 to degree at least a, can be computed from 〈A,B〉 directly.

Lemma 5 For 〈A,B〉 ∈ B (X, Y, I), we have

(a) 〈A,B〉a = 〈(a⊗A)⇑⇓, a → B〉 and

(b) 〈A,B〉a = 〈(a → A), (a⊗B)⇓⇑〉.

PROOF. Due to duality we verify only (a). The assertion follows from the
following claims.

(a1) (a ⊗ A)⇑⇓ is an extent of a formal concept 〈(a ⊗ A)⇑⇓, D〉 which is
similar to 〈A,B〉 to degree at least a;

(a2) if 〈C,F 〉 is a formal concept similar to 〈A,B〉 to degree at least a then
〈(a⊗A)⇑⇓, D〉 ≤ 〈C,F 〉;
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(a3) a → B is an intent of a concept c which is similar to 〈A, B〉 to degree
at least a;

(a4) if 〈C, F 〉 is a concept similar to 〈A,B〉 to degree at least a then for c
from (a3) we have c ≤ 〈C,F 〉.

Indeed, from (a1) and (a2) we get that 〈(a ⊗ A)⇑⇓, D〉 is the least formal
concept similar to 〈A,B〉 to degree at least a. Therefore, 〈A,B〉a = 〈(a ⊗
A)⇑⇓, D〉. Then, (a3) and (a4) yield that a → B is an intent of the least
formal concept similar to 〈A,B〉 to degree at least a, i.e. a → B = D. We
now verify (a1)–(a4).
(a1): We have a ≤ ((a⊗A) ≈ A) ≤ ((a⊗A)⇑ ≈ A⇑) ≤ ((a⊗A)⇑⇓ ≈ A⇑⇓) =
((a⊗A)⇑⇓ ≈ A) since A is an extent.
(a2): If a ≤ (A ≈ C) then using adjointness, we get a⊗ A ⊆ C from which
we have (a⊗A)⇑⇓ ⊆ C⇑⇓ = C, proving (a2).
(a3): By Lemma 4, a → B is an intent. Using adjointness we easily get
a ≤ (B ≈ a → B) = (〈A,B〉 ≈ c).
(a4): We need to show F ⊆ a → B. Since a ≤ (〈A,B〉 ≈ 〈C, F 〉) = (B ≈ F ),
adjointness gives a ⊗ F ⊆ B and then F ⊆ a → B. The proof is complete.

¤

Thus we have (〈A,B〉a)a = 〈a → (a⊗A)⇑⇓, (a⊗ (a → B))⇓⇑〉.
Lemma 6 For 〈A, B〉 ∈ B (X, Y, I) we have 〈A,B〉a = ((〈A,B〉a)a)a.

PROOF. First we show that for every c, d ∈ B (X, Y, I) we have (1) c ≤ d
implies ca ≤ da, (2) c ≤ d implies ca ≤ da, (3) c ≤ (ca)a, (4) c ≥ (ca)a.
(1): Recall that ca =

∧{e ∈ B (X,Y, I) | 〈c, e〉 ∈ a≈}. We need to show that
if 〈d, f〉 ∈ a≈ then ca ≤ f . Thus suppose 〈d, f〉 ∈ a≈. From 〈c, c〉 ∈ a≈
and from the fact that a≈ is a tolerance relation compatible with lattice
operations on B (X, Y, I) we get 〈c, c ∧ f〉 = 〈c ∧ d, c ∧ f〉 ∈ a≈. Now, since
ca is the infimum of all e such that 〈c, e〉 ∈ a≈, we have ca ≤ c∧ f and since
c ∧ f ≤ f , we get ca ≤ f , proving (1).
(2) can be proved analogously. (3) and (4) are obvious.
Now, let c = 〈A, B〉. By (3), c ≤ (ca)a and so ca ≤ ((ca)a)a by (1). Applying
(4) to ca we get ca ≥ ((ca)a)a, proving ca = ((ca)a)a. ¤

By Lemma 6, if a a≈-block [c1, c2] is generated by 〈A,B〉 ∈ B (X,Y, I), i.e.
c1 = 〈A,B〉a, c2 = (〈A,B〉a)a, then it is also generated by c2, i.e. c1 = (c2)a

and c2 = ((c2)a)a. Therefore, a≈-blocks [c1, c2] are uniquely given by their
suprema c2. Moreover, since each formal concept c2 = 〈A,B〉 is uniquely
given by A (namely, B = A⇑), a≈-blocks are uniquely given by extents of
their suprema. Denote the set of all extents of suprema of a≈-blocks by
ESB(a), i.e.

ESB(a) = {A ∈ LX | 〈A,B〉 ∈ B (X, Y, I) and
[〈A,B〉a, 〈A,B〉] ∈ B (X,Y, I) /a≈}.



2.2. Computing the factor lattice B (X, Y, I) /a≈ directly from
input data 21

Before presenting the main result, let us recall that a fuzzy (L-)closure
operator in a set U [4] is a mapping C : A → C(A) satisfying

(1) A ⊆ C(A),

(2) S(A1, A2) ≤ S(C(A1), C(A2)) and

(3) C(A) = C(C(A)),

for any A,A1, A2 ∈ LU . A fixed point of C is any fuzzy set A in U such that
A = C(A). Denote by fix(C) the set of all fixed points of C, i.e.

fix(C) = {A ∈ LX |A = C(A)}.

Theorem 7 Given input data 〈X, Y, I〉 and a threshold a ∈ L, a mapping
Ca sending a fuzzy set A in X to a fuzzy set a → (a⊗A)⇑⇓ in X is a fuzzy
closure operator in X for which fix(Ca) = ESB(a).

PROOF. First, we verify that Ca is a fuzzy closure operator. A ⊆ Ca(A)
means A ⊆ a → (a⊗ A)⇑⇓ which is equivalent (by adjointness) to a⊗ A ⊆
(a ⊗ A)⇑⇓ which is true since E ⊆ E⇑⇓ is always the case. We showed
A ⊆ Ca(A).
S(A1, A2) ≤ S(Ca(A1), Ca(A2)): Since for D1, D2 ∈ LU , S(D1, D2) ≤ S(a⊗
D1, a⊗D2) and S(D1, D2) ≤ S(a → D1, a → D2), see [7], we have

S(A1, A2) ≤ S(a⊗A1, a⊗A2) ≤ S((a⊗A1)⇑⇓, (a⊗A2)⇑⇓) ≤
≤ S(a → (a⊗A1)⇑⇓, a → (a⊗A2)⇑⇓) = S(Ca(A1), Ca(A2)).

To verify Ca(A) = Ca(Ca(A)), suppose first that A is an extent. Then, by
Lemma 5, Ca(A) is the extent of (〈A,A⇑〉a)a. In order to show Ca(A) =
Ca(Ca(A)), we thus have to check (〈A,A⇑〉a)a = (((〈A, A⇑〉a)a)a)a which
is true due to Lemma 6. If A is not an extent, the assertion follows from
the fact that Ca(A) = Ca(A⇑⇓), the fact that A⇑⇓ is an extent and the
previous claim. We thus need to check Ca(A) = Ca(A⇑⇓). We have a ≤
(A ≈ a⊗A) ≤ (A⇑⇓ ≈ (a⊗A)⇑⇓). So, A⇑⇓ is similar to (a⊗A)⇑⇓ to degree
at least a, whence a → (a⊗A)⇑⇓ ⊇ A⇑⇓ since by Lemma 5, a → (a⊗A)⇑⇓ is
the greatest one which is similar to (a⊗A)⇑⇓ to degree at least a. In fact, in
order to apply Lemma 5, A needs to be an extent. However, going through
the proof, one can see that (a⊗A)⇑⇓ is the extent of the least formal concept
which is similar to A to degree at least a even for an arbitrary fuzzy set A
(not necessarily an extent). Therefore, the claim of Lemma 5 can be safely
used in our case. We therefore have A ⊆ A⇑⇓ ⊆ a → (a ⊗ A)⇑⇓ and since
a⊗ (a → b) ≤ b, we get

(a⊗A)⇑⇓ ⊆ (a⊗A⇑⇓)⇑⇓ ⊆ (a⊗ (a → (a⊗A)⇑⇓))⇑⇓ ⊆
⊆ ((a⊗A)⇑⇓)⇑⇓ = (a⊗A)⇑⇓.
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This proves (a⊗A)⇑⇓ = (a⊗A⇑⇓)⇑⇓ and so Ca(A) = a → (a⊗A)⇑⇓ =
a → (a⊗A⇑⇓)⇑⇓ = Ca(A⇑⇓).
Second, we verify fix(Ca) = ESB(a). Let A ∈ fix(Ca). By Lemma 2, the in-
terval [〈A, A⇑〉a, (〈A,A⇑〉a)a] is a a≈-block, and by Lemma 5, (〈A,A⇑〉a)a =
〈a → (a⊗A)⇑⇓, . . . 〉. Since A = Ca(A) = a → (a⊗A)⇑⇓, A is the extent of
a supremum of a block, i.e. A ∈ ESB(a). Conversely, let A ∈ ESB(a). Then
[〈A,A⇑〉a, 〈A,A⇑〉] is an a≈-block and so (〈A,A⇑〉a)a = 〈A,A⇑〉. Lemma 5
now gives A = a → (a⊗A)⇑⇓, i.e. A = Ca(A) verifying A ∈ fix(Ca). ¤

Therefore, A is the extent of some formal concept c2 which is the supremum
of some a≈-block [c1, c2] ∈ B (X,Y, I) /a≈ if and only if A is a fixed point
of Ca. By Theorem 7 and the above considerations, going through fix(Ca)
and computing for each A ∈ fix(Ca) the corresponding [〈A,A⇑〉a, 〈A, A⇑〉] =
[〈(a ⊗ A)⇑⇓, a → A⇑〉, 〈A,A⇑〉] generates all a≈-blocks of B (X, Y, I) /a≈.
Strictly speaking, we do not generate the a≈-blocks [c1, c2] ∈ B (X, Y, I) /a≈
but only their boundary formal concepts c1, c2 ∈ B (X, Y, I). This is, how-
ever, in accordance with the purpose of the factorization of B (X,Y, I): We
are looking for a granular view which is more concise than B (X, Y, I) itself.

The problem of computing B (X, Y, I) /a≈ thus reduces to the problem of
computing fix(Ca). To this end, we can use the algorithm described in [9].
The algorithm is an extension of the Ganter’s NextClosure algorithm gener-
ating all fixed points of an (ordinary) closure operator (see [27]) and gener-
ates all fixed points of a fuzzy closure operator C in a lexicographic order.
Note that the algorithm in [9] is formulated in terms of the fuzzy closure
operator ⇑⇓ (i.e. sending A to A⇑⇓). But since each fuzzy closure operator
is of the form of ⇑⇓ [4, 5], there is no loss of generality involved. We now
briefly recall the algorithm from [9].
Suppose X = {1, 2, . . . , n} and L = {0 = a1, a2, . . . , ak = 1} such that if
ai ≤ aj in L then i ≤ j (i.e. the ordering of elements of L by indices extends
their ordering in L). For i, r ∈ {1, . . . , n}, j, s ∈ {1, . . . , k}, put

(i, j) ≤ (r, s) iff i < r, or i = r and j ≥ s.

For A ∈ LX , (i, j) ∈ X × {1, . . . , k}, put

A⊕ (i, j) := Ca((A ∩ {1, 2, . . . , i− 1}) ∪ { aj
/
i}).

Here, A∩{1, 2, . . . , i−1} is the intersection of a fuzzy set A and the ordinary
set {1, 2, . . . , i − 1}, i.e. (A ∩ {1, 2, . . . , i − 1})(x) = A(x) for x < i and
(A ∩ {1, 2, . . . , i− 1})(x) = 0 otherwise. Furthermore, for A,B ∈ LX , put

A <(i,j) B iff
A ∩ {1, . . . , i− 1} = B ∩ {1, . . . , i− 1} and A(i) < B(i) = aj .
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Finally, put
A < B iff A <(i,j) B for some (i, j).

Then < is a total order on LX and for each A ∈ LX , the least fixed point
A+ ∈ fix(Ca) which is greater (w.r.t. <) than A is given by A+ = A⊕ (i, j)
where (i, j) is the greatest one with A <(i,j) A⊕(i, j) (see [9]). The algorithm
for generating a≈-blocks which is based on this description of the successor
operator + follows.

INPUT: 〈X, Y, I〉 (data table with fuzzy attributes), a ∈ L (similarity
threshold)
OUTPUT: B (X, Y, I) /a≈ (a≈-blocks [c1, c2])

/* Algorithm */
A := ∅
while A 6= X do

A := A+

store([〈(a⊗A)⇑⇓, a → A⇑〉, 〈A,A⇑〉])

As argued in [9], generating fix(Ca) has polynomial time delay complexity
(i.e., given a fixed point, the next one is generated in time polynomial in
terms of size of the input 〈X, Y, I〉 [32]). Since generating a a≈-block [〈(a⊗
A)⇑⇓, a → A⇑〉, 〈A,A⇑〉] from A takes a polynomial time, our algorithm is
of polynomial time delay complexity as well.

2.2.2 Factorized context

Now we are going to propose another way to compute B (X, Y, I) /a≈ di-
rectly from input data, without computing first the whole B (X,Y ∗Y , I)
and then computing the similarity blocks. First, we propose a construc-
tion of a similarity-based factorization assigning to 〈X,Y, I〉 a “factorized
data” 〈X, Y, I〉/a. Then we show that B (X,Y, I) /a≈ is isomorphic to
B(〈X, Y, I〉/a). This reduces the computation of B (X,Y, I) /a≈ to the com-
putation of an ordinary fuzzy concept lattice B(〈X,Y, I〉/a) for which we
have an algorithm (see [9] or previous section) with a polynomial time delay
complexity (see [32]).

For a formal fuzzy context 〈X,Y, I〉 and a (user-specified) threshold a ∈ L,
introduce a formal fuzzy context 〈X, Y, I〉/a by

〈X,Y, I〉/a := 〈X,Y, a → I〉.
〈X,Y, I〉/a will be called the factorized context of 〈X, Y, I〉 by threshold a.
That is, 〈X, Y, I〉/a has the same objects and attributes as 〈X, Y, I〉, and
the incidence relation of 〈X, Y, I〉/a is a → I. Since

(a → I)(x, y) = a → I(x, y),
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which makes computing 〈X, Y, I〉/a from 〈X,Y, I〉 easy. Note that objects
and attributes are more similar in 〈X,Y, I〉/a than in the original context
〈X, Y, I〉. Indeed, for any x1, x2 ∈ X and y1, y2 ∈ Y one can easily verify
that

I(x1, y1) ↔ I(x1, y1) ≤ (a → I)(x1, y1) ↔ (a → I)(x2, y2)

which intuitively says that in the factorized context, the table entries are
more similar (closer) than in the original one.
The following is our main theorem.

Theorem 8 For a formal fuzzy context 〈X, Y, I〉 and a threshold a ∈ L we
have

B (X, Y, I) /a≈ ∼= B(〈X, Y, I〉/a).

In words, B (X, Y, I) /a≈ is isomorphic to B(〈X,Y, I〉/a). Moreover, un-
der the isomorphism, [〈A1, B1〉, 〈A2, B2〉] ∈ B (X, Y, I) /a≈ corresponds to
〈A2, B1〉 ∈ B(〈X, Y, I〉/a).

PROOF. Let ⇑ and ⇓ denote the operators induced by I (see 1.1 and 1.2)
and ⇑a and ⇓a denote the operators induced by a → I, that is, for A ∈ LX

and B ∈ LY we have

A⇑a(y) =
∧

x∈X

A(x) → (a → I)(x, y),

B⇓a(y) =
∧

y∈Y

B(y) → (a → I)(x, y).

Take any A ∈ LX . Then A⇑a(y) =
∧

x∈X(A(x) → (a → I(x, y))) =∧
x∈X(a → (A(x) → I(x, y))) = a → ∧

x∈X(A(x) → I(x, y)) = a → A⇑(x),
and A⇑a⇓a(x) =

∧
y∈Y (A⇑a(y) → (a → I(x, y))) =

∧
y∈Y (a → (A⇑a(y) →

I(x, y))) = a → ∧
y∈Y (A⇑a(y) → I(x, y)) = a → ∧

y∈Y ([
∧

x∈X(a → (A(x) →
I(x, y)))] → I(x, y)) = a → ∧

y∈Y ([
∧

x∈X((a⊗A(x)) → I(x, y))] → I(x, y)) =
a → ∧

y∈Y ((a⊗A)⇑(x) → I(x, y)) = a → (a⊗A)⇑⇓(x), i.e.

A⇑a = a → A⇑ and A⇑a⇓a = a → (a⊗A)⇑⇓. (2.1)

Now, let [〈A1, B1〉, 〈A2, B2〉] ∈ B (X, Y, I) /a≈. Using Lemma 2 and Lemma 5,
there is 〈A,B〉 ∈ B (X, Y, I) such that 〈A1, B1〉 = 〈A, B〉a = 〈(a⊗A)⇑⇓, a →
B〉 and 〈A2, B2〉 = (〈A,B〉a)a = 〈a → (a ⊗ A)⇑⇓, (a ⊗ (a → B))⇓⇑〉.
Since 〈A,B〉 = 〈A,A⇑〉, (2.1) yields A2 = a → (a ⊗ A)⇑⇓ = A⇑a⇓a and
B1 = a → B = a → A⇑ = A⇑a . This shows 〈A2, B1〉 ∈ B (X, Y, a → I) =
B(〈X, Y, I〉/a).
Conversely, if 〈A2, B1〉 ∈ B(〈X, Y, I〉/a) then using (2.1), B1 = A⇑a

2 = a →
A⇑2 and A2 = A⇑a⇓a

2 = a → (a ⊗ A2)⇑⇓. By Lemma 2 and Lemma 5,
[〈B⇓

1 , B1〉, 〈A2, A
⇑
2 〉] ∈ B (X,Y, I) /a≈. The proof is complete. ¤
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Remark 1 As we have seen, the blocks of B (X, Y, I) /a≈ can be recon-
structed from the formal concepts of B(〈X, Y, I〉/a):
If 〈A, B〉 ∈ B(〈X, Y, I〉/a) then [〈B⇓, B〉, 〈A, A⇑〉] ∈ B (X, Y, I) /a≈.

Computing B(〈X, Y, I〉/a) means computing of the ordinary fuzzy concept
lattice. This can be done by an algorithm of polynomial time delay com-
plexity, see [9] or previous section.
Finally, lets look at the connection to the approach by the closure operator
presented in previous section. From Theorem 8 and the previous remark
we can see that the extents of concepts of B(〈X, Y, I〉/a) are precisely the
extents of suprema of a≈-blocks of B (X, Y, I) /a≈. In previous section we
have discovered that these extents in turn are precisely the fixed points of
the fuzzy closure operator Ca. The connection lies in the correspondence of
the composite mapping of the operators induced by a → I (denoted ⇑a and
⇓a in the proof of Theorem 8) and the fuzzy closure operator Ca; i.e. for
any A ∈ LX we have

A⇑a⇓a = a → (a⊗A)⇑⇓ = Ca(A).

2.3 Factorization of B (X∗X , Y ∗Y , I)

Denote the binary fuzzy relation ≈ on B (X,Y, I) defined over objects by
≈Ext and defined over attributes by ≈Int, i.e.

(〈A1, B1〉 ≈Ext 〈A2, B2〉) =
∧

x∈X

(A1(x) ↔ A2(x)) (2.2)

(〈A1, B1〉 ≈Int 〈A2, B2〉) =
∧

y∈Y

(B1(y) ↔ B2(y)). (2.3)

From section 1.2.3 we already know that ≈ is a fuzzy equivalence relation on
B (X, Y, I) and that measuring similarity of formal concepts of B (X, Y, I)
via intents Bi coincides with measuring similarity via extents Ai. As a
consequence, we write also just ≈ instead of ≈Ext and ≈Int.
This all said, applies to ≈ on B (X, Y, I). In this section we explore the
use of ≈ (or the appropriate modification) with B (X∗X , Y ∗Y , I). We are
questioning whether concept lattices with hedges can also be factorized by
a similarity relation.

2.3.1 Similarity compatible with a hedge

Note first that one cannot directly apply the approach which works for
B (X, Y, I). Namely, due to employing hedges, some important properties
are no longer available (for instance, the composite mappings ↑↓ and ↓↑

are not fuzzy closure, nor even closure, operators in general, or ≈ is not
compatible any more, see the following remark). Nevertheless, we propose
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a feasible approach to factorization of concept lattices with hedges. In some
cases, however, we restrict ourselves to the case when one of the hedges is
identity and leave the fully general case to future investigation. Note that
in B (X∗X , Y ∗Y , I) corresponding to both “one-sided” fuzzy concept lattices,
see [43] and [34], one of the hedges is globalization and the other is identity.

Remark 2 If one would define ≈Ext or ≈Int on B (X∗X , Y ∗Y , I) simply by
(2.2) or (2.3), compatibility would be lost. This is still true even if one of
the hedges is identity. Consider e.g. ∗

X = idL. Then, ≈Ext is compatible
with

∧
. Namely,

∧
j∈J Aj =

⋂
j∈J Aj for Aj = A⇑↓j [17]. However, ≈Ext

need not be compatible with
∨

as shown by the following example. The dual
situation applies to ≈Int.

Example 1 Take a ÃLukasiewicz structure on [0, 1], let ∗X be identity and
∗Y be globalization, and consider the following data table

I y1 y2 y3

x1 1 0.5 0
x2 0 0 1
x3 0.5 1 0

One can check that for A1 = { 0.5/
x1, 0.5/

x3}, B1 = { 1/
y1, 1/

y2, 0.5/
y3},

A2 = { 0.5/
x1, 1/

x3}, B2 = { 0.5/
y1, 1/

y2}, A3 = { 1/
x1, 0.5/

x3} and
B3 = { 1/

y1, 0.5/
y2},

(1) 〈Ai, Bi〉 ∈ B (X∗X , Y ∗Y , I), i = 1, 2, 3,

(2) 〈A1, B1〉a≈〈A2, B2〉 and 〈A1, B1〉a≈〈A3, B3〉,
(3) (〈A1, B1〉 ∧ 〈A1, B1〉) = 〈A1, B1〉a≈〈A1, B1〉 = (〈A2, B2〉 ∧ 〈A3, B3〉),

but

(4) a � (〈A1, B1〉 ∨ 〈A1, B1〉) ≈ (〈A2, B2〉 ∨ 〈A3, B3〉).

In order to propose our way to factorize B (X∗X , Y ∗Y , I), we need the follow-
ing notion. Let ≈ be a fuzzy relation in B (X∗X , Y ∗Y , I), a ∈ L be a truth
degree, and ∗ be a hedge (particularly, ∗ will be ∗X or ∗Y ). We say that ≈ is
compatible with ∗ and a if for each c1, c2 ∈ B (X∗X , Y ∗Y , I) we have that

if a ≤ (c1 ≈ c2), then a ≤ (c1 ≈ c2)∗. (2.4)

Consider the following fuzzy relations on B (X∗X , Y ∗Y , I): By ≈Ext and ≈Int

we denote the fuzzy relations defined by (2.2) and (2.3), respectively, and
by ≈∗X

Ext and ≈∗Y
Int we denote fuzzy relations defined by

(〈A1, B1〉 ≈∗X
Ext 〈A2, B2〉) =

( ∧

x∈X

(A1(x) ↔ A2(x))

)∗X

(2.5)

(〈A1, B1〉 ≈∗Y
Int 〈A2, B2〉) =


 ∧

y∈Y

(B1(y) ↔ B2(y))



∗Y

. (2.6)
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Occasionally, we write also (A1 ≈∗X
Ext A2) instead of

(〈A1, B1〉 ≈∗X
Ext 〈A2, B2〉), etc.

The following assertion is easy to see.

Lemma 9 (1) If a ∈ L is a fixed point of ∗X , i.e. a∗X = a, then ≈Ext is
compatible with ∗X and a; similarly for ∗Y and ≈Int.
(2) For any a ∈ L, ≈∗X

Ext is compatible with ∗X and a; similarly for ∗Y and
≈∗Y

Int.

PROOF. Due to similarity, we prove only the case of ∗X and ≈Ext.
(1) If, for any c1, c2 ∈ B (X∗X , Y ∗Y , I), it holds a ≤ (c1 ≈Ext c2), then from
the monotonicity of hedges (easily provable from (iii) of the definition of a
hedge in section 1.2.1) we directly get a = a∗X ≤ (c1 ≈Ext c2)∗X ;
(2) Again directly from the idempotency of hedges ((iv) of the definition of
a hedge). ¤

We need the following two assertions (here, ≈ is defined by (A1 ≈ A2) =∧
x∈X(A1(x) ↔ A2(x))).

Lemma 10 Let A1, A2 ∈ LX . Then (A1 ≈ A2)∗X ≤ (A∗X
1 ≈ A∗X

2 ).

PROOF. Denote ∗X by ∗. We have (A1 ≈ A2)∗ ≤ (A∗1 ≈ A∗2) =
∧

x∈X(A1(x)∗ ↔
A2(x)∗) iff (A1 ≈ A2)∗ ≤ (A1(x)∗ ↔ A2(x)∗) for all x ∈ X. Since (A1 ≈
A2)∗ ≤ (A1(x) ↔ A2(x))∗ for all x ∈ X it suffices to show (A1(x) ↔
A2(x))∗ ≤ (A1(x)∗ ↔ A2(x)∗), which is true. Indeed, (A1(x) ↔ A2(x))∗ ≤
(A1(x) → A2(x))∗ ∧ (A2(x) → A1(x))∗ ≤ (A1(x)∗ → A2(x)∗) ∧ (A2(x)∗ →
A1(x)∗) = (A1(x)∗ ↔ A2(x)∗). ¤

Lemma 11 For A1, A2 ∈ LX we have (A1 ≈ A2)∗X ≤ (A↑1 ≈ A↑2).

PROOF. Follows directly from Lemma 10 and (A1 ≈ A2) ≤ (A⇑1 ≈ A⇑2 ) [3].
¤

Suppose we have two fuzzy equivalence relations on B (X∗X , Y ∗Y , I), ≈X

and ≈Y such that ≈X is compatible with ∗X and a, and ≈Y is compatible
with ∗Y and a. Although, in general, ≈X may be different from ≈Y , the
following theorem shows that their a-cuts coincide.

Theorem 12 Let ≈X and ≈Y be fuzzy equivalence relations on B (X∗X , Y ∗Y , I)
compatible with ∗X and a, and with ∗Y and a, respectively. Then a≈X =
a≈Y .



28 Chapter 2. Factorizing fuzzy concept lattices by a≈

PROOF. Using Lemma 11, the proof is similar to the proof of ≈Ext=≈Int

in [3]. ¤

We can therefore write a≈ instead of a≈X and a≈Y . Note that Theorem 12
applies in particular to the fuzzy relations from Lemma 9. With the above
notation, the following theorem shows a way to factorize B (X∗X , Y ∗Y , I).

Theorem 13 If ≈ is compatible with ∗X and a, and with ∗Y and a, then a≈
is a compatible tolerance relation on B (X∗X , Y ∗Y , I).

PROOF. Theorem can be proved by applying (2.4) and Lemma 11 twice
at the end of the proof of compatibility of ≈ on B (X,Y, I) in [3]. ¤

Therefore, we can consider the factor lattice B (X∗X , Y ∗Y , I) /a≈ of lat-
tice B (X∗X , Y ∗Y , I) by tolerance a≈. The construction is the same as for
B (X,Y, I) described in section 1.2.3 or in detail in [3]. In what follows, we
present a way to obtain B (X∗X , Y ∗Y , I) /a≈ directly, without the need to
compute B (X∗X , Y ∗Y , I) first and then to compute the blocks of a≈. Basi-
cally, we follow and appropriately modify the methods from sections 2.2.1
and 2.2.2.

2.3.2 The L{1}-closure operator

Actually, the method from section 2.2.1 makes use of the fact that for each
fuzzy set A in U we have

〈A, a⊗A〉 ∈ a≈ and 〈A, a → A〉 ∈ a≈. (2.7)

Here, a≈ is defined by 〈A1, A2〉 ∈ a≈ iff a ≤ ∧
u∈U (A1(x) ↔ A2(x)). If a≈

has this feature, we can proceed for fast factorization of B (X∗X , Y ∗Y , I) by
a≈. Note that (2.7) is satisfied, for instance, for a≈Ext or a≈Int if a is a fixed
point of ∗X or ∗Y , respectively, cf. Lemma 9. In the remainder of the section
we will suppose that a≈ always satisfies (2.7). The following assertion shows
that 〈A,B〉a (the least formal concept a≈-similar to 〈A,B〉) and 〈A,B〉a (the
greatest formal concept a≈-similar to 〈A,B〉) can be computed from 〈A,B〉
directly, cf. Lemma 5.

Lemma 14 For 〈A,B〉 ∈ B (X∗X , Y ∗Y , I), we have

(a) 〈A,B〉a = 〈(a⊗A)↑↓, (a → B)↓↑〉 and

(b) 〈A,B〉a = 〈(a → A)↑↓, (a⊗B)↓↑〉.

PROOF. Due to duality we sketch only the proof of (a). We need to prove,
that (a ⊗ A)↑↓ is an extent of the least formal concept similar to 〈A, B〉 to
degree at least a and (a → B)↓↑ is the corresponding intent. That is (1)
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(a ⊗ A)↑↓ is an extent of a formal concept 〈(a ⊗ A)↑↓, D〉 which is similar
to 〈A,B〉 to degree at least a; (2) if 〈C, F 〉 is a formal concept similar to
〈A,B〉 to degree at least a then 〈(a ⊗ A)↑↓, D〉 ≤ 〈C,F 〉; and similarly for
intent (a → B)↓↑. Both (1) and (2) can be easily proved using (2.7), (2.4),
Lemma 11 and adjointness property, see the proof of Lemma 5 for details.

¤

Remark 3 Thus we have (〈A,B〉a)a = 〈(a → (a ⊗ A)↑↓)↑↓, (a ⊗ (a →
B)↓↑)↓↑〉.

Another property, analogous to the case of B (X,Y, I), is the following.

Lemma 15 If ∗X is identity on L and A is an extent then we have a →
A = (a → A)↑↓; similarly for ∗Y and an intent B.

PROOF. We sketch the proof for extents. The inequality ⊆ follows directly
from A = A∗X ⊆ A↑↓ and the converse inequality ⊇ can be proved the
same way as the corresponding inequality in the analogous Lemma 4, with
application of (2.7), (2.4) and Lemma 11 at appropriate places. ¤

One way to obtain the factor lattice directly is based on the following
theorem. Recall that an L{1}-closure operator in a set U [4] is a map-
ping C : A → C(A) satisfying (1) A ⊆ C(A), (2) A1 ⊆ A2 implies
C(A1) ⊆ C(A2), (3) C(A) = C(C(A)) for A,A1, A2 ∈ LU . A fixed point of
C is any fuzzy set A in U such that A = C(A).

Theorem 16 Let ∗X be identity on L. Then the mapping Ca : A 7→ (a →
(a⊗ A)↑↓)↑↓ is an L{1}-closure operator in LX such that the fixed points of
Ca are just the extents of suprema of a≈-blocks of B (X∗X , Y ∗Y , I) /a≈.

PROOF. The idea of the proof remains the same as in the proof of analo-
gous Theorem 7 for B (X, Y, I) /a≈. Briefly, we need to (1) verify that Ca is
an L{1}-closure operator and (2) prove the equality of the set of fixed points
of Ca and the set of extents of suprema of a≈-blocks.
First, we verify that Ca is an L{1}-closure operator. A ⊆ Ca(A) means
A ⊆ (a → (a ⊗ A)↑↓)↑↓ which simplifies to A ⊆ a → (a ⊗ A)⇑↓ due to
∗X = idL and Lemma 15. The latter is equivalent (by adjointness) to a⊗A ⊆
(a⊗A)⇑↓ which is true since E ⊆ E⇑⇓ ⊆ E⇑↓ is always the case. We showed
A ⊆ Ca(A).
A1 ⊆ A2 implies C(A1) ⊆ C(A2): Since for D1, D2 ∈ LU , D1 ⊆ D2 implies
(a⊗D1) ⊆ (a⊗D2), D1 ⊆ D2 implies (a → D1) ⊆ (a → D2) and D1 ⊆ D2

implies D↑↓
1 ⊆ D↑↓

2 [12], by chaining we have A1 ⊆ A2 implies C(A1) ⊆
C(A2).
To verify Ca(A) = Ca(Ca(A)), we will make use of the previous two already
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proven conditions. We already know that if we consider ∗X = idL, Ca(A) =
a → (a⊗A)⇑↓. Using A ⊆ Ca(A) we have (a⊗A)⇑↓ ⊆ (a⊗(a → (a⊗A)⇑↓))⇑↓

which implies a → (a ⊗ A)⇑↓ ⊆ a → (a ⊗ (a → (a ⊗ A)⇑↓))⇑↓, and since
a⊗ (a → b) ≤ b, we get

a → (a⊗A)⇑↓ ⊆ a → (a⊗ (a → (a⊗A)⇑↓))⇑↓ ⊆
⊆ a → ((a⊗A)⇑↓)⇑↓ = a → (a⊗A)⇑↓.

This proves a → (a⊗A)⇑↓ = a → (a⊗ (a → (a⊗A)⇑↓))⇑↓ and so Ca(A) =
Ca(Ca(A)).
Second, we verify that the set of fixed points of Ca equals the set of extents
of suprema of a≈-blocks. Let A be a fixed point of Ca. By Lemma 2, the in-
terval [〈A,A↑〉a, (〈A,A↑〉a)a] is a a≈-block, and by Lemma 14, (〈A, A↑〉a)a =
〈(a → (a⊗A)↑↓)↑↓, . . . 〉. Since A = Ca(A) = (a → (a⊗A)↑↓)↑↓, A is the ex-
tent of a supremum of a a≈-block. Conversely, let A be a supremum of a a≈-
block. Then [〈A,A↑〉a, 〈A,A↑〉] is an a≈-block and so (〈A,A↑〉a)a = 〈A,A↑〉.
Lemma 14 now gives A = (a → (a ⊗ A)↑↓)↑↓, i.e. A = Ca(A) verifying A
being a fixed point of Ca, finishing the proof. ¤

Remark 4 Ca : A 7→ a → (a ⊗ A)⇑↓ is an L{1}-closure operator, but
not an L-closure operator in general, since we do not have S(A1, A2) ≤
S (Ca(A1), Ca(A2)) for all A1, A2 ∈ LX as the following example shows.

Example 2 Consider the setting and data table from Example 1. Take
A1 = { 0.5/

x1, 1/
x2, 0.5/

x3} and A2 = { 1/
x2}. One can check that given

a = 1, Ca(A1) = A⇑↓1 = { 1/
x1, 1/

x2, 1/
x3} and Ca(A2) = A⇑↓2 = { 1/

x2},
hence 0.5 = S (A1, A2) � S (Ca(A1), Ca(A2)) = 0.

Now, fixed points of L{1}-closure operators can be efficiently computed by
an extension of Ganter’s NextClosure algorithm, see [9]. The extension
was recalled at the end of section 2.2.1. Note that the algorithm described
there is formulated in terms of a fuzzy closure operator. But looking closely
at the algorithm and its proof of correctness (see [9]), we reveal that it
in fact computes the fixed points of an L{1}-closure operator, not only L-
closure operator. The reason is that for the algorithm to work, the property
of graded subsethood from the definition of fuzzy closure operator is not
necessary and crisp subsethood suffices. We only need a small modification
which is due to the use of hedges. The only modification is in the definition of
<(i,j) (see the description of the algorithm in section 2.2.1). For A, B ∈ LX ,
put

A <(i,j) B iff
A∗X ∩ {1, . . . , i− 1} = B∗X ∩ {1, . . . , i− 1} and

A∗X (i) < B∗X (i) = aj .
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The whole rest of the algorithm remains untouched, including the complexity
of the algorithm. Note that to compute the concept lattice B (X, Y ∗Y , I) /a≈
(i.e. ∗X is identity on L) we have to use the version of the algorithm iterating
over attributes in order to utilize the hedge ∗Y .

2.3.3 Factorized context

Another way to obtain the factor lattice directly (from input data, without
computing first the whole concept lattice and then computing the similarity
blocks) is based on the idea of factorized context proposed in section 2.2.2.
Recall that the factorized context 〈X, Y, I〉/a of 〈X,Y, I〉 by (user-specified)
threshold a is defined by

〈X,Y, I〉/a := 〈X,Y, a → I〉,

that is, 〈X, Y, I〉/a has the same objects and attributes as 〈X,Y, I〉, and the
incidence relation of 〈X,Y, I〉/a is a → I. The following is the generalization
of Theorem 8 for the case of B (X∗X , Y ∗Y , I) /a≈.

Theorem 17 If ∗X is identity on L then for any 〈X, Y, I〉 and a threshold
a ∈ L we have

B (X∗X , Y ∗Y , I) /a≈ ∼= B (X∗X , Y ∗Y , a → I) .

In words, B (X∗X , Y ∗Y , I) /a≈ is isomorphic to B (X∗X , Y ∗Y , a → I). More-
over, under the isomorphism, [〈A1, B1〉, 〈A2, B2〉] ∈ B (X∗X , Y ∗Y , I) /a≈
corresponds to 〈A2, B1〉 ∈ B (X∗X , Y ∗Y , a → I).

PROOF. We proceed the same way as in the proof of Theorem 8.
Denote ∗X by ∗. Let ↑ and ↓ denote the operators (1.6) and (1.7) induced by
I and ↑a and ↓a denote the operators induced by a → I. Take any A ∈ LX .
Then we have A↑a(y) =

∧
x∈X(A∗(x) → (a → I(x, y))) =

∧
x∈X(a →

(A∗(x) → I(x, y))) = a → ∧
x∈X(A∗(x) → I(x, y)) = a → A↑(x), and

A↑a↓a(x) =
∧

y∈Y (A↑a∗(y) → (a → I(x, y))) =
∧

y∈Y (a → (A↑a∗(y) →
I(x, y))) = a → ∧

y∈Y (A↑a∗(y) → I(x, y)) = a → ∧
y∈Y ([

∧
x∈X(a →

(A∗(x) → I(x, y)))]∗ → I(x, y)) = a → ∧
y∈Y ([

∧
x∈X((a⊗A∗(x)) → I(x, y))]∗ →

I(x, y)) = a → ∧
y∈Y ((a⊗A∗)⇑∗(x) → I(x, y)) = a → (a⊗A∗)⇑↓(x), i.e.

A↑a = a → A↑ and A↑a↓a = a → (a⊗A∗X )⇑↓. (2.8)

Now, let [〈A1, B1〉, 〈A2, B2〉] ∈ B (X∗X , Y ∗Y , I) /a≈. By Lemmas 2 and 14,
there is 〈A, B〉 ∈ B (X∗X , Y ∗Y , I) such that 〈A1, B1〉 = 〈A, B〉a = 〈(a ⊗
A)↑↓, (a → B)↓↑〉 and 〈A2, B2〉 = (〈A,B〉a)a = 〈(a → (a ⊗ A)↑↓)↑↓, (a ⊗
(a → B)↓↑)↓↑〉. If we further consider ∗X = idL, the expressions for the
boundary concepts simplify to 〈A1, B1〉 = 〈A,B〉a = 〈(a⊗A)⇑↓, a → B〉 and
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〈A2, B2〉 = (〈A,B〉a)a = 〈a → (a⊗A)⇑↓, (a⊗(a → B))↓⇑〉, due to Lemma 15.
Since 〈A,B〉 = 〈A,A⇑〉, (2.8) yields A2 = a → (a ⊗ A)⇑↓ = A↑a↓a and
B1 = a → B = a → A⇑ = A↑a . This shows 〈A2, B1〉 ∈ B (X, Y ∗Y , a → I).
Conversely, if 〈A2, B1〉 ∈ B (X, Y ∗Y , a → I) then using (2.1), B1 = A↑a

2 =
a → A⇑2 and A2 = A↑a↓a

2 = a → (a ⊗ A2)⇑↓. By Lemma 2 and Lemma 14,
[〈B↓

1 , B1〉, 〈A2, A
⇑
2 〉] ∈ B (X,Y ∗Y , I) /a≈. The proof is complete.

¤

Remark 5 The blocks of B (X, Y ∗Y , I) /a≈ can be reconstructed from the
formal concepts of B (X,Y ∗Y , a → I):
If 〈A,B〉 ∈ B (X,Y ∗Y , a → I) then [〈B↓, B〉, 〈A, A⇑〉] ∈ B (X, Y ∗Y , I) /a≈.

Computing B (X,Y ∗
Y , a → I) means computing the fuzzy concept lattice

with hedges, where the hedge ∗X is identity. This can be done by an al-
gorithm of polynomial time delay complexity, see [9] or previous section.
Finally, we mention the connection to the approach by the closure operator
presented in previous section, similarily as in the case without hedges in sec-
tion 2.2.2. In both approaches we are restricted to the case ∗X = idL. From
Theorem 17 and the previous remark we have that the extents of concepts
of B (X,Y ∗Y , a → I) are precisely the extents of suprema of a≈-blocks of
B (X,Y ∗Y , I) /a≈ and from previous section we have that these extents are
precisely the fixed points of the L{1}-closure operator Ca. The connection,
without surprise, is analogical – the correspondence of the composite map-
ping of the operators induced by a → I (denoted ↑a and ↓a in the proof of
Theorem 17) and the L{1}-closure operator Ca; i.e. for any A ∈ LX we have

A↑a↓a = a → (a⊗A)⇑↓ = Ca(A).

2.4 Examples and experiments

The aim of this section is to demonstrate experimentally the effect of re-
duction of size of a fuzzy concept lattice (with hedges) by factorization by
similarity, and, especially, the speed-up of our algorithms of fast and direct
factorization. By reduction of size of a fuzzy concept lattice (with hedges)
given by a data table 〈X,Y, I〉 with fuzzy attributes and a user-specified
threshold a, we mean the ratio

|B (X,Y, I) /a≈|
|B (X, Y, I) |

( |B (X∗X , Y ∗Y , I) /a≈|
|B (X∗X , Y ∗Y , I) |

)

of the number |B (X,Y, I) /a≈| (resp. |B (X∗X , Y ∗Y , I) /a≈|) of elements of
B (X,Y, I) /a≈ (resp. B (X∗X , Y ∗Y , I) /a≈), i.e. the number of elements of
the factor lattice, to the number |B (X,Y, I) | (resp. |B (X∗X , Y ∗Y , I) |) of
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Figure 2.1: Size reduction and speed-ups from Tab. 2.2.

elements of B (X, Y, I) (resp. B (X∗X , Y ∗Y , I)), i.e. the number of elements
of the original lattice. By a speed-up we mean the ratio of the time for com-
puting the factor lattice by a naive algorithm to the time for computing the
factor lattice by our algorithm. By “our algorithm” we mean the algorithms
of fast and direct factorization described in the end of sections 2.2.1, 2.3.2
(fuzzy and L{1}-closure operator) and 2.2.2, 2.3.3 (factorized context with-
out and with hedges). The algorithms exploiting a closure operator will be
denoted “CL” in the following sections (tables, figures, etc.) presenting re-
sult of experiments; the algorithms computing a factor fuzzy concept lattice
(with hedges) from a factorized context will be denoted “FC”. By “naive al-
gorithm” we mean computing the factor lattice by first generating the whole
fuzzy concept lattice (with hedges) B (X, Y, I) (resp. B (X∗X , Y ∗Y , I)) by a
polynomial time-delay algorithm (mentioned in previous sections; the same
algorithm used for computing a factor lattice from a factorized context) and
subsequently generating the a≈-blocks by producing the boundary concepts
[〈A,B〉a, (〈A, B〉a)a].

2.4.1 Countries of EU

Consider the data table depicted in Tab. 2.1. The data table was introduced
in section 1.2.3, there are 25 countries of EU (objects from X) described by
some of their demographic and economic characteristics (attributes from Y ).
The original values of the characteristics are scaled to interval [0, 1] so that
the characteristics can be considered as fuzzy attributes with truth degrees
from five element chain L = {0, 0.25, 0.5, 0.75, 1}.
Tab. 2.2 summarizes the results of factorization when using ÃLukasiewicz
fuzzy logical operations, no hedges (identity) and threshold values a =
0, 0.25, 0.5, 0.75, 1 (recall that fator lattice for the case a = 0 is always
an one-element trivial lattice and for the case a = 1 is always isomorphic
to the whole concept lattice). Fig. 2.1 contains graphs depicting reduc-
tion |B (X, Y, I) /a≈|/|B (X, Y, I) | and speed-ups from Tab. 2.2. Finally, for
better illustration of size reduction, the factor lattices B (X, Y, I) /a≈ are
depicted in Fig. 2.2.
The example demonstrates that smaller thresholds lead to both larger size
reduction and speed-up. We can see that the time needed for computing
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Table 2.1: Data table of EU countries, 5 truth degrees.

a b c d e
1 Austria 0 0.25 0.5 1 1
2 Belgium 0 0 0.5 1 0.75
3 Cyprus 0 0 0.25 1 0.75
4 Czech rep. 0 0.25 0.25 0.75 0.75
5 Denmark 0 0 0.5 1 0.75
6 Estonia 0 0 0 0.5 0.5
7 Finland 0 0.5 0.5 0.75 0.5
8 France 0.75 1 0.5 1 0.75
9 Germany 1 0.75 0.5 1 0.75

10 Greece 0 0.25 0.25 0.75 0.5
11 Hungary 0 0.25 0.25 0.25 0.75
12 Ireland 0 0.25 0.5 0.75 1
13 Italy 0.75 0.5 0.5 1 0.5
14 Latvia 0 0 0 0.75 0.5
15 Lithuania 0 0 0 1 0.25
16 Luxembourg 0 0 1 1 1
17 Malta 0 0 0.25 0.75 0.75
18 Netherlands 0.25 0 0.5 0.5 1
19 Poland 0.5 0.5 0 0.5 0
20 Portugal 0 0.25 0.25 0.75 1
21 Slovakia 0 0 0 0 0
22 Slovenia 0 0 0.25 0.25 0.75
23 Spain 0.5 1 0.25 0.75 0.5
24 Sweden 0 0.75 0.5 0.75 0.75
25 UK 0.75 0.5 0.5 1 0.75

attributes: a – many habitants (millions), b – large area (thousands km2),
c – high GDP (EUR), d – low inflation (%), e – low unemployment (%)
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Table 2.2: Results of factorization of B (X, Y, I) of data from Tab. 2.1,
ÃLukasiewicz fuzzy logical connectives, no hedges (identity); |B (X, Y, I) | =
218, time for computing B (X, Y, I) = 11 ms.

thresholds 0 0.25 0.5 0.75 1
size |B (X, Y, I) /a≈| 1 10 47 119 218
size reduction 0.005 0.046 0.216 0.546 1.000
naive algorithm (ms) 33 61 105 79 44
our algorithm “CL” (ms) 1 2 4 7 11
speed-up “CL” 33.00 30.50 26.25 11.29 4.00
our algorithm “FC” (ms) 1 2 4 7 11
speed-up “FC” 33.00 30.50 26.25 11.29 4.00

a = 0.25 a = 0.5 a = 0.75 a = 1

Figure 2.2: Factor lattices B (X,Y, I) /a≈ of data from Tab. 2.1, ÃLukasiewicz
fuzzy logical connectives, no hedges (identity).
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Table 2.3: Results of factorization of B (X, Y, I) of data from
Tab. 2.1, minimum-based fuzzy logical connectives, no hedges (identity);
|B (X,Y, I) | = 166, time for computing B (X, Y, I) = 7 ms.

thresholds 0 0.25 0.5 0.75 1
size |B (X, Y, I) /a≈| 1 10 27 79 166
size reduction 0.006 0.060 0.163 0.476 1.000
naive algorithm (ms) 18 17 17 19 23
our algorithm “CL” (ms) 1 2 2 4 7
speed-up “CL” 18.00 8.50 8.50 4.75 3.29
our algorithm “FC” (ms) 1 2 2 4 7
speed-up “FC” 18.00 8.50 8.50 4.75 3.29
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Figure 2.3: Size reduction and speed-ups from Tab. 2.3.

the factor lattice B (X, Y, I) /a≈ by our algorithms is smaller than time
needed for computing the original concept lattice B (X, Y, I) and, of course,
much smaller than time needed for computing the factor lattice by the naive
algorithm. For instance, for a = 0.25, time needed for computing B (X, Y, I)
is 11 ms, computing the factor lattice B (X, Y, I) /a≈ by the naive algorithm
lasts long 61 ms, but our algorithms requires for the same task only 2 ms
(both “CL” and “FC”), i.e. our algorithms are more than thirty times faster!
The functionalities of size reduction and speed-up on the threshold values
are roughly exponential. Note also that computing B (X,Y, I) /a≈ using
the naive algorithm, most of the time consumed is spent on factorization
rather than computing B (X,Y, I): 61 ms is consumed in total of which
11 ms is spent on computing B (X, Y, I) and 50 = 61 − 11 ms (82 %) is
spent on factorization, i.e. on computing B (X, Y, I) /a≈ from B (X, Y, I).
Furthermore, we can see that both our algorithms are equally fast, from
which we can conclude that the approaches of computing factor lattice either
using new closure operator or first factorizing the context are of almost the
same (or at least very similar) complexity (in the terms of time)2.
Tab. 2.3, Fig. 2.3 and Fig. 2.4 show the same characteristics when using the
minimum-based (Göedel) fuzzy logical operations instead of ÃLukasiewicz

2Formal time delay complexity is the polynomial time delay complexity of Ganter’s
NextClosure algorithm, see [9]
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a = 0.25 a = 0.5 a = 0.75 a = 1

Figure 2.4: Factor lattices B (X, Y, I) /a≈ of data from Tab. 2.1, minimum-
based fuzzy logical connectives, no hedges (identity).
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Figure 2.5: Size reduction and speed-ups from Tab. 2.4.

fuzzy logical operations. We can see the smaller speed-up, however, but still
significant, our algorithms are almost twenty times faster than the naive
algorithm. It seems factorizing fuzzy concept lattices built using minimum-
based fuzzy logical operations is somehow ,,easier”.
Now we look how the factorization works on fuzzy concept lattices with
hedges. Recall from sections 2.3.2 and 2.3.3 that our algorithms are re-
stricted on one hedge only (the other one has to be an identity). In all
experiments involving hedges we are constraining attributes (constraining
objects does not make much sense), thus we fix ∗X to be the identity on L
and select non-identity truth-stressing hedges ∗Y on L.
Let ∗Y 1 be a hedge defined as follows: for a ∈ L, a∗Y = 0.5 if a = 0.75
and a∗Y = a otherwise. To measure the similarity of concepts we can use
a≈, since ≈ is compatible with ∗Y and each fixed point ∗Y (Lemma 9)
and a≈ satisfies (2.7). Thereby for threshold values we can use only the
fixed points of ∗Y , i.e. a = 0, 0.25, 0.5, 1. Tab. 2.4 summarizes the results
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Table 2.4: Results of factorization of B (X, Y ∗Y , I) of data from Tab. 2.1,
ÃLukasiewicz fuzzy logical connectives, hedge ∗Y 1; |B (X, Y ∗Y , I) | = 86, time
for computing B (X, Y ∗Y , I) = 5 ms.

thresholds 0 0.25 0.5 1
size |B (X,Y ∗Y , I) /a≈| 1 10 14 86
size reduction 0.012 0.116 0.163 1.000
naive algorithm (ms) 10 18 17 13
our algorithm “CL” (ms) 1 1 1 6
speed-up “CL” 10.00 18.00 17.00 2.17
our algorithm “FC” (ms) 1 2 2 5
speed-up “FC” 10.00 9.00 8.50 2.60

a = 0.25 a = 0.5 a = 1

Figure 2.6: Factor lattices B (X, Y ∗Y , I) /a≈ of data from Tab. 2.1,
ÃLukasiewicz fuzzy logical connectives, hedge ∗Y 1.



2.4. Examples and experiments 39

Table 2.5: Results of factorization of B (X, Y ∗Y , I) of data from Tab. 2.1,
minimum-based fuzzy logical connectives, hedge ∗Y 1; |B (X,Y ∗Y , I) | = 95,
time for computing B (X,Y ∗Y , I) = 5 ms.

thresholds 0 0.25 0.5 1
size |B (X, Y ∗Y , I) /a≈| 1 10 27 95
size reduction 0.011 0.105 0.284 1.000
naive algorithm (ms) 8 9 10 15
our algorithm “CL” (ms) 1 2 2 5
speed-up “CL” 8.00 4.50 5.00 3.00
our algorithm “FC” (ms) 1 2 3 5
speed-up “FC” 8.00 4.50 3.33 3.00
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Figure 2.7: Size reduction and speed-ups from Tab. 2.5.

of factorization when using ÃLukasiewicz fuzzy logical operations, Fig. 2.5
contains graphs depicting size reduction and speed-up and the factor lattices
B (X, Y ∗Y , I) /a≈ are depicted in Fig. 2.6. We can see that the factorization
by our algorithms works as well on lattices with a hedge as without it.
Furthermore, we could conclude that the time consumed by the factorization
part of the naive algorithm heavily depends on the structure of the whole
lattice. Our algorithms, on the other side, compute the factor lattice just
like any other concept lattice, no matter what the whole lattice looks like.
Tab. 2.5, Fig. 2.7 and Fig. 2.8 show the same characteristics when using the
minimum-based (Göedel) fuzzy logical operations instead of ÃLukasiewicz
fuzzy logical operations.
We also did a series of experiments for a more restrictive hedge ∗Y : for
a ∈ L, a∗Y = 0.25 if a = 0.5, 0.75 and a∗Y = a otherwise. The possible
threshold values in this case are (the fixed points of ∗Y ) a = 0, 0.25, 1, of
which only a = 0.25 is non-trivial. Results are summarized and depicted in
Tab. 2.6, Fig. 2.9 and Fig. 2.10 (ÃLukasiewicz fuzzy logical operations) and
Tab. 2.7, Fig. 2.11 and Fig. 2.12 (minimum-based fuzzy logical operations).
Finally, we demonstrate the effects of factorization on an example of data
table from Tab. 2.8 with a finer distribution of truth degrees, which are
now from eleven element chain L = {0, 0.1, 0.2, . . . , 0.9, 1}. We again use
all possible values for threshold. of thresholds, a = 0.1, 0.2, . . . , 0.9. The
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a = 0.25 a = 0.5 a = 1

Figure 2.8: Factor lattices B (X, Y ∗Y , I) /a≈ of data from Tab. 2.1,
minimum-based fuzzy logical connectives, hedge ∗Y 1.

Table 2.6: Results of factorization of B (X, Y ∗Y , I) of data from Tab. 2.1,
ÃLukasiewicz fuzzy logical connectives, hedge ∗Y 2; |B (X, Y ∗Y , I) | = 33, time
for computing B (X, Y ∗Y , I) = 3 ms.

thresholds 0 0.25 1
size |B (X,Y ∗Y , I) /a≈| 1 10 33
size reduction 0.030 0.303 1.000
naive algorithm (ms) 4 8 6
our algorithm “CL” (ms) 1 2 3
speed-up “CL” 4.00 4.00 2.00
our algorithm “FC” (ms) 1 2 3
speed-up “FC” 4.00 4.00 2.00
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Figure 2.9: Size reduction and speed-ups from Tab. 2.6.
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a = 0.25 a = 1

Figure 2.10: Factor lattices B (X, Y ∗Y , I) /a≈ of data from Tab. 2.1,
ÃLukasiewicz fuzzy logical connectives, hedge ∗Y 2.

Table 2.7: Results of factorization of B (X, Y ∗Y , I) of data from Tab. 2.1,
minimum-based fuzzy logical connectives, hedge ∗Y 2; |B (X,Y ∗Y , I) | = 50,
time for computing B (X,Y ∗Y , I) = 3 ms.

thresholds 0 0.25 1
size |B (X,Y ∗Y , I) /a≈| 1 10 50
size reduction 0.020 0.200 1.000
naive algorithm (ms) 10 10 8
our algorithm “CL” (ms) 1 2 3
speed-up “CL” 10.00 5.00 2.67
our algorithm “FC” (ms) 1 1 3
speed-up “FC” 10.00 10.00 2.67
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Figure 2.11: Size reduction and speed-ups from Tab. 2.7.
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Table 2.8: Data table of EU countries, 11 truth degrees.

a b c d e
1 Austria 0.1 0.2 0.5 0.9 0.9
2 Belgium 0.1 0.1 0.5 0.9 0.7
3 Cyprus 0 0 0.4 0.9 0.9
4 Czech rep. 0.1 0.1 0.2 0.7 0.7
5 Denmark 0.1 0.1 0.5 0.9 0.9
6 Estonia 0 0.1 0.1 0.5 0.4
7 Finland 0.1 0.6 0.4 0.8 0.6
8 France 0.7 1 0.4 0.9 0.6
9 Germany 1 0.7 0.5 0.9 0.7

10 Greece 0.1 0.2 0.2 0.7 0.5
11 Hungary 0.1 0.2 0.1 0.2 0.8
12 Ireland 0 0.1 0.5 0.7 0.9
13 Italy 0.7 0.6 0.4 0.9 0.6
14 Latvia 0 0.1 0 0.9 0.4
15 Lithuania 0 0.1 0 1 0.2
16 Luxembourg 0 0 1 0.9 1
17 Malta 0 0 0.1 0.9 0.7
18 Netherlands 0.2 0.1 0.4 0.6 1
19 Poland 0.5 0.6 0.1 0.6 0.1
20 Portugal 0.1 0.2 0.2 0.7 0.9
21 Slovakia 0.1 0.1 0.1 0 0
22 Slovenia 0 0 0.3 0.2 0.8
23 Spain 0.5 0.9 0.3 0.8 0.5
24 Sweden 0.1 0.8 0.4 0.8 0.8
25 UK 0.7 0.4 0.4 1 0.8

attributes: a – many habitants (millions), b – large area (thousands km2),
c – high GDP (EUR), d – low inflation (%), e – low unemployment (%)
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a = 0.25 a = 1

Figure 2.12: Factor lattices B (X, Y ∗Y , I) /a≈ of data from Tab. 2.1,
minimum-based fuzzy logical connectives, hedge ∗Y 2.
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Figure 2.13: Size reduction and speed-ups from Tab. 2.9.

characteristics are the same as for the above case of five truth degrees.
The two hedges (and possible threshold values) we use in this case are: (1)
for a ∈ L, a∗Y = 0.5 if a = 0.6..0.9 and a∗Y = a otherwise (thresholds a =
0, 0.1, . . . , 0.5, 1); (2) for a ∈ L, a∗Y = 0.3 if a = 0.4..0.9 and a∗Y = a otherwise
(thresholds a = 0, 0.1, 0.2, 0.3, 1). You can see the results obtained when
considering both ÃLukasiewicz and minimum-based fuzzy logical operations,
no hedges and the two above described hedges in Tab. 2.9 to Tab. 2.14
(summarizing tables), Fig. 2.13 to Fig. 2.23 (size reduction and speed-up
graphs) and Fig. 2.14 to Fig. 2.24 (some factor lattices, some are too big for
showing, counting more than five hundreds of concepts).
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Table 2.9: Results of factorization of B (X,Y, I) of data from Tab. 2.8,
ÃLukasiewicz fuzzy logical connectives, no hedges (identity); |B (X, Y, I) | =
5435, time for computing B (X, Y, I) = 473 ms.

thresholds 0 0.1 0.2 0.3 0.4 0.5
size |B (X, Y, I) /a≈| 1 10 39 117 286 605
size reduction 0.000 0.002 0.007 0.022 0.053 0.111
naive algorithm (ms) 9726 10786 13540 19133 26740 33161
our algorithm “CL” (ms) 1 3 8 16 37 71
speed-up “CL” 9726 3595 1692 1195 722 467
our algorithm “FC” (ms) 1 3 8 20 41 78
speed-up “FC” 9726 3595 1692 956 652 425

thresholds 0.6 0.7 0.8 0.9 1
size |B (X, Y, I) /a≈| 1142 1925 2963 4171 5435
size reduction 0.210 0.354 0.545 0.767 1.000
naive algorithm (ms) 34541 28505 19046 12438 10704
our algorithm “CL” (ms) 125 200 292 393 483
speed-up “CL” 276 142 65 31 22
our algorithm “FC” (ms) 135 210 300 394 472
speed-up “FC” 255 135 63 31 22

a = 0.1 a = 0.2 a = 0.3 a = 0.4

Figure 2.14: Factor lattices B (X, Y, I) /a≈ of data from Tab. 2.8,
ÃLukasiewicz fuzzy logical connectives, no hedges (identity).
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Table 2.10: Results of factorization of B (X, Y, I) of data from
Tab. 2.8, minimum-based fuzzy logical connectives, no hedges (identity);
|B (X, Y, I) | = 1273, time for computing B (X,Y, I) = 88 ms.

thresholds 0 0.1 0.2 0.3 0.4 0.5
size |B (X,Y, I) /a≈| 1 10 42 91 112 164
size reduction 0.001 0.008 0.033 0.071 0.088 0.129
naive algorithm (ms) 516 479 468 474 478 482
our algorithm “CL” (ms) 1 3 6 11 14 18
speed-up “CL” 516.0 159.7 78.00 43.09 34.14 26.78
our algorithm “FC” (ms) 2 2 6 10 14 18
speed-up “FC” 258.0 239.5 78.00 47.40 34.14 26.78

thresholds 0.6 0.7 0.8 0.9 1
size |B (X, Y, I) /a≈| 246 402 642 938 1273
size reduction 0.193 0.316 0.504 0.737 1.000
naive algorithm (ms) 490 509 539 575 620
our algorithm “CL” (ms) 25 34 51 68 90
speed-up “CL” 19.60 14.97 10.57 8.46 6.89
our algorithm “FC” (ms) 23 33 50 66 88
speed-up “FC” 21.30 15.42 10.78 8.71 7.05
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Figure 2.15: Size reduction and speed-ups from Tab. 2.10.

Table 2.11: Results of factorization of B (X,Y ∗Y , I) of data from Tab. 2.8,
ÃLukasiewicz fuzzy logical connectives, hedge ∗Y 1; |B (X,Y ∗Y , I) | = 746,
time for computing B (X,Y ∗Y , I) = 71 ms.

thresholds 0 0.1 0.2 0.3 0.4 0.5 1
size |B (X,Y ∗Y , I) /a≈| 1 10 18 20 22 22 746
size reduction 0.001 0.013 0.024 0.027 0.029 0.029 1.000
naive algorithm (ms) 272 415 462 412 349 299 320
our algorithm “CL” (ms) 1 3 4 4 4 5 73
speed-up “CL” 272.0 138.3 115.5 103.0 87.25 59.8 4.38
our algorithm “FC” (ms) 1 3 4 5 5 5 71
speed-up “FC” 272.0 138.3 115.5 82.40 69.80 59.80 4.51
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a = 0.1 a = 0.2 a = 0.3

a = 0.4 a = 0.5 a = 0.6

Figure 2.16: Factor lattices B (X, Y, I) /a≈ of data from Tab. 2.8, minimum-
based fuzzy logical connectives, no hedges (identity).
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Figure 2.17: Size reduction and speed-ups from Tab. 2.11.

a = 0.1 a = 0.2 a = 0.3 a = 0.4 a = 0.5

Figure 2.18: Factor lattices B (X,Y ∗Y , I) /a≈ of data from Tab. 2.8,
ÃLukasiewicz fuzzy logical connectives, hedge ∗Y 1.
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Table 2.12: Results of factorization of B (X,Y ∗Y , I) of data from Tab. 2.8,
minimum-based fuzzy logical connectives, hedge ∗Y 1; |B (X, Y ∗Y , I) | = 431,
time for computing B (X,Y ∗Y , I) = 40 ms.

thresholds 0 0.1 0.2 0.3 0.4 0.5 1
size |B (X,Y ∗Y , I) /a≈| 1 10 42 91 112 164 431
size reduction 0.002 0.023 0.097 0.211 0.260 0.381 1.000
naive algorithm (ms) 96 92 93 95 95 100 121
our algorithm “CL” (ms) 2 3 7 11 13 20 42
speed-up “CL” 48.00 30.67 13.29 8.64 7.31 5.00 2.88
our algorithm “FC” (ms) 1 3 6 11 13 18 40
speed-up “FC” 96.00 30.67 15.50 8.64 7.31 5.56 3.03
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Figure 2.19: Size reduction and speed-ups from Tab. 2.12.

a = 0.1 a = 0.2 a = 3

a = 0.4 a = 0.5 a = 1

Figure 2.20: Factor lattices B (X, Y ∗Y , I) /a≈ of data from Tab. 2.8,
minimum-based fuzzy logical connectives, hedge ∗Y 1.



48 Chapter 2. Factorizing fuzzy concept lattices by a≈

Table 2.13: Results of factorization of B (X, Y ∗Y , I) of data from Tab. 2.8,
ÃLukasiewicz fuzzy logical connectives, hedge ∗Y 2; |B (X, Y ∗Y , I) | = 165,
time for computing B (X,Y ∗Y , I) = 19 ms.

thresholds 0 0.1 0.2 0.3 1
size |B (X, Y ∗Y , I) /a≈| 1 10 18 20 165
size reduction 0.006 0.061 0.109 0.121 1.000
naive algorithm (ms) 33 61 58 44 42
our algorithm “CL” (ms) 2 3 4 4 20
speed-up “CL” 16.50 20.33 14.50 11.00 2.1
our algorithm “FC” (ms) 1 3 5 5 19
speed-up “FC” 33.00 20.33 11.60 8.80 2.21

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

si
ze

 r
ed

uc
tio

n

thresholds

 0

 10

 20

 30

 40

 50

 0  0.2  0.4  0.6  0.8  1

sp
ee

d-
up

 "
C

L"

thresholds

 0

 10

 20

 30

 40

 50

 0  0.2  0.4  0.6  0.8  1

sp
ee

d-
up

 "
F

C
"

thresholds

Figure 2.21: Size reduction and speed-ups from Tab. 2.13.

We can see much greater speed-up of our algorithms to the naive algorithm
(even hundreds times faster!). The reason is that the factorization part of
the naive algorithm is very time demanding – it can require even fifty times
more time than the time required for computing the whole lattice (in the case
of ÃLukasiewicz fuzzy logical operations). Furthermore, note that computing
the whole lattice using the new closure operator (algorithm “CL”, threshold
equal to 1) is slightly slower than computing the whole lattice using the
original closure operator. Indeed, the new closure operator is a little bit
more complex than the original one. On the other side, computing factor
lattice from factorized context using original closure operator is never slower
than computing whole lattice. This finding is also clear to explain.

2.4.2 IPAQ questionnaire

In the following example we process more larger (at least in the number of ob-
jects) and more real-life, however, input data table. The data table 〈X, Y, I〉
comes from samples of results of IPAQ questionnaire. The purpose of the
IPAQ (International Physical Activity Questionnaire) is to monitor various
attributes related to physical activity of a population. We used the full data
set collected during a research program at the Faculty of Physical Culture,
Palacký University, Olomouc. The objects from X are both men and women
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a = 0.1 a = 2 a = 0.3 a = 1

Figure 2.22: Factor lattices B (X, Y ∗Y , I) /a≈ of data from Tab. 2.8,
ÃLukasiewicz fuzzy logical connectives, hedge ∗Y 2.

Table 2.14: Results of factorization of B (X,Y ∗Y , I) of data from Tab. 2.8,
minimum-based fuzzy logical connectives, hedge ∗Y 2; |B (X, Y ∗Y , I) | = 259,
time for computing B (X,Y ∗Y , I) = 22 ms.

thresholds 0 0.1 0.2 0.3 1
size |B (X, Y ∗Y , I) /a≈| 1 10 42 91 259
size reduction 0.004 0.039 0.162 0.351 1.000
naive algorithm (ms) 45 46 47 50 60
our algorithm “CL” (ms) 1 3 6 11 23
speed-up “CL” 45.00 15.33 7.83 4.55 2.61
our algorithm “FC” (ms) 1 2 6 10 22
speed-up “FC” 45.00 23.00 7.83 5.00 2.73
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Figure 2.23: Size reduction and speed-ups from Tab. 2.14.
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a = 0.1 a = 0.2 a = 0.3 a = 1

Figure 2.24: Factor lattices B (X,Y ∗Y , I) /a≈ of data from Tab. 2.8,
minimum-based fuzzy logical connectives, hedge ∗Y 2.

Table 2.15: Results of factorization of B (X, Y, I) of IPAQ data table,
ÃLukasiewicz fuzzy logical connectives, no hedges (identity); |B (X, Y, I) | =
275990, time for computing B (X, Y, I) = 1838.1 s.

thresholds 0 0.25 0.5 0.75 1
size |B (X,Y, I) /a≈| 1 128 4374 48492 275990
size reduction 0.000 0.000 0.016 0.176 1.000
naive algorithm (min) 590 572.3 2627 3350 877.5
our algorithm “CL” (s) 0.2 1.6 41.4 391.1 1840.9
speed-up “CL” 177000 21461 3807 514 28.6
our algorithm “FC” (s) 0.2 2.0 45.6 411.2 1835.2
speed-up “FC” 177000 17169 3457 489 28.7

in the Czech Republic who entered the questionnaire; counting 4318 objects.
The attributes are selected IPAQ-attributes: “frequent intensive physical ac-
tivity”, “frequent medium-burdening physical activity”, “frequent walking”,
“higher age”, “high education”, “excess hours in work”, “living in large city”
and “good BMI (Body Mass Index)”; total of 8 attributes. The attributes
are scaled to [0, 1] so that they can be considered as fuzzy attributes with
truth degrees from five element chain L = {0, 0.25, 0.5, 0.75, 1}. We will
refer to 〈X, Y, I〉 as “IPAQ data table” in the following.
The results for ÃLukasiewicz and minimum-based (Göedel) fuzzy logical op-
erations, both structures without hedges and with the two hedges used in
the previous example of countries of EU (for five element chain) are depicted
in Tab. 2.15 to Tab. 2.20 (summarizing tables) and Fig. 2.25 to Fig. 2.30
(size reduction and speed-up graphs). We do not show the factor lattices,
since they are too big counting tens thousand of formal concepts.
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Figure 2.25: Size reduction and speed-ups from Tab. 2.15.

Table 2.16: Results of factorization of B (X,Y, I) of IPAQ data ta-
ble, minimum-based fuzzy logical connectives, no hedges (identity);
|B (X, Y, I) | = 178977, time for computing B (X, Y, I) = 805 s.

thresholds 0 0.25 0.5 0.75 1
size |B (X,Y, I) /a≈| 1 128 2457 30326 178977
size reduction 0.000 0.001 0.014 0.169 1.000
naive algorithm (min) 107.3 62.4 50.9 207.7 479.6
our algorithm “CL” (s) 0.2 1.3 15.2 147.5 817.5
speed-up “CL” 32190 2880 201 84.5 35.2
our algorithm “FC” (s) 0.2 1.2 14.3 141.7 803.5
speed-up “FC” 32190 3120 214 87.9 35.8
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Figure 2.26: Size reduction and speed-ups from Tab. 2.16.
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Table 2.17: Results of factorization of B (X,Y ∗Y , I) of IPAQ data table,
ÃLukasiewicz fuzzy logical connectives, hedge ∗Y 1; |B (X, Y ∗Y , I) | = 42686,
time for computing B (X,Y ∗Y , I) = 286.6 s.

thresholds 0 0.25 0.5 1
size |B (X,Y ∗Y , I) /a≈| 1 128 256 42686
size reduction 0.000 0.003 0.006 1.000
naive algorithm (s) 1294.6 4114.5 2138.4 1638.5
our algorithm “CL” (s) 0.2 1.6 3.3 286.7
speed-up “CL” 6473 2572 648 5.72
our algorithm “FC” (s) 0.2 1.9 3.8 286.3
speed-up “FC” 6473 2166 563 5.72

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

si
ze

 r
ed

uc
tio

n

thresholds

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  0.2  0.4  0.6  0.8  1

sp
ee

d-
up

 "
C

L"

thresholds

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  0.2  0.4  0.6  0.8  1

sp
ee

d-
up

 "
F

C
"

thresholds

Figure 2.27: Size reduction and speed-ups from Tab. 2.17.

What can we see? First, a significant size reduction, especially in the case
when hedges other than identity are used. The factor lattices don’t grow
above the fifth of the size of corresponding whole lattices even for thresh-
old a = 0.75. Second, this great size reduction is accompanied by a giant
speed-ups, our algorithms are many thousands times faster than the naive al-
gorithm (see the case of ÃLukasiewicz fuzzy logical operations and no hedges,
Tab. 2.15). Note that, in tables for cases without hedges, the values for
the time needed for computing the factor lattice by the naive algorithm are
denoted in minutes rather than seconds or microseconds, which means than
the computation lasted for hours. For instance 3350 minutes ≈ 56 hours
contrary to 1831 seconds ≈ 31 minutes for the whole lattice alone and con-
trary to roughly 400 seconds ≈ 7 minutes for our algorithms, see Tab. 2.15.
This makes the naive algorithm absolutely impracticable! Lastly, take note
of the very varying times of the naive algorithm across the threshold values
and the different progress with ÃLukasiewicz and minimum-based fuzzy logi-
cal operations compared to the “smooth” exponential functionality of times
of our algorithms.
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Table 2.18: Results of factorization of B (X, Y ∗Y , I) of IPAQ data table,
minimum-based fuzzy logical connectives, hedge ∗Y 1; |B (X,Y ∗Y , I) | =
30326, time for computing B (X,Y ∗Y , I) = 144.8 s.

thresholds 0 0.25 0.5 1
size |B (X, Y ∗Y , I) /a≈| 1 128 2457 30326
size reduction 0.000 0.004 0.081 1.000
naive algorithm (s) 579.8 518.3 536.1 802.9
our algorithm “CL” (s) 0.2 1.2 15.2 146.6
speed-up “CL” 2899 432 35.27 5.47
our algorithm “FC” (s) 0.2 1.2 14.3 144.6
speed-up “FC” 2899 432 37.49 5.55
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Figure 2.28: Size reduction and speed-ups from Tab. 2.18.

Table 2.19: Results of factorization of B (X, Y ∗Y , I) of IPAQ data table,
ÃLukasiewicz fuzzy logical connectives, hedge ∗Y 2; |B (X,Y ∗Y , I) | = 3440,
time for computing B (X,Y ∗Y , I) = 27.8 s.

thresholds 0 0.25 1
size |B (X, Y ∗Y , I) /a≈| 1 128 3440
size reduction 0.000 0.037 1.000
naive algorithm (s) 41.7 138.0 67.5
our algorithm “CL” (s) 0.2 1.7 27.9
speed-up “CL” 208.5 81.18 2.42
our algorithm “FC” (s) 0.2 2.0 27.8
speed-up “FC” 208.5 69.00 2.43
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Figure 2.29: Size reduction and speed-ups from Tab. 2.19.
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Table 2.20: Results of factorization of B (X,Y ∗Y , I) of IPAQ data table,
minimum-based fuzzy logical connectives, hedge ∗Y 2; |B (X, Y ∗Y , I) | =
4374, time for computing B (X, Y ∗Y , I) = 24.6 s.

thresholds 0 0.25 1
size |B (X, Y ∗Y , I) /a≈| 1 128 4374
size reduction 0.000 0.029 1.000
naive algorithm (s) 580.3 517.7 540.0
our algorithm “CL” (s) 0.2 1.4 24.7
speed-up “CL” 2902 369.8 21.86
our algorithm “FC” (s) 0.2 1.3 24.6
speed-up “FC” 2902 398.2 21.95
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Figure 2.30: Size reduction and speed-ups from Tab. 2.20.

2.4.3 Randomly generated data tables

The final experiments on factorizing fuzzy concept lattices (with hedges)
by similarity are done above randomly generated data tables. The aim is
to demonstrate the effect of reduction of size of lattices and the speed-up
of our algorithms on data stored in tables going from sparse ones, through
medium-filled ones to quite dense tables. By sparse or dense data tables we
mean formal context 〈X, Y, I〉 describing very few or very many, respectively,
entries of the relation among objects and attributes. The data tables in the
following experiments were generated using uniform random generation of
truth degrees, keeping the specified pre-set fill ration. By fill ratio we mean
the ratio

|I(x, y); I(x, y) > 0,∀x ∈ X, ∀y ∈ Y |
|X||Y |

of the number |I(x, y); I(x, y) > 0,∀x ∈ X, ∀y ∈ Y | of relations I(x, y)
between an object and an attribute with non-zero truth degree, i.e. number
of non-zero entries in the data table 〈X, Y, I〉, to the total number |X||Y |
of the number |X| of objects multiply the number |Y | of attributes, i.e. the
size of the data table.
In the subsequent experiments we generated data tables of fixed size of
100 objects and 5 attributes with truth degrees from five element chain
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L = {0, 0.25, 0.5, 0.75, 1} and with fill ratios of 5 %, 25 %, 50 % and 75 %.
Every experiment was repeated ten times with new randomly generated
data and the final outcome of the experiment is the average of outcomes
of particular runs. The size reduction and speed-up graphs only of results
for ÃLukasiewicz and minimum-based (Göedel) fuzzy logical operations, both
structures without hedges and with the first hedge (used in the previous ex-
amples of countries of EU and IPAQ questionnaire) are depicted in Fig. 2.31
to Fig. 2.34.
Note that while the size reduction has quite exponential functionality on
thresholds for all values from 0 to 1, speed-ups has, however, exponential
functionality mostly except threshold values close to 0. This is due to that
for threshold values close to 0 there are very few similarity blocks and the
factorization part of the naive algorithm discovers them relatively quickly.
We can also see that size reduction as well as speed-ups are not much de-
pendent on the fill ratio of data tables.

2.5 Summary and topics for future work

We have shown two ways to obtain B (X,Y, I) /a≈ without computing first
the whole B (X, Y, I) and then computing the factorization, the approach
self-offered by the definition. First of the ways (fast factorization) lies in the
fact that the extents (or intents) of suprema of blocks of B (X, Y, I) /a≈ are
fixed points of a certain fuzzy closure operator. By that, the factor lattice
is isomorphic to the lattice of fixed points of the fuzzy closure operator.
Compared to that, the second way (direct factorization) is due to interpre-
tation of the blocks of B (X,Y, I) /a≈ as formal concepts in a “factorized
context” 〈X, Y, I〉/a, i.e. in a context in which objects and attributes are
more similar than in the original context 〈X, Y, I〉. Both approaches are sig-
nificantly faster than the “naive” two-step, from definition, approach, as we
have seen in the experiments. In conclusion, it is worth mentioning that the
method by fuzzy closure operator (and due to the equivalence also the other
method) is subsumed by the more general approach imposing constraints
(user-defined requirements) supplied along with the input data table and
expressed by means of a fuzzy closure operator, which was very recently
introduced in [18].
We also presented analogical methods of factorization of fuzzy concept lat-
tices with hedges. The factor lattice can be computed directly from input
data providing one of the hedges is identity. Future research could focus on
eliminating this and other restrictions from the assumptions of the methods.
Other topic for future research could be the development of a single method
for direct factorization by arbitrary tolerance relation (interpreted as sim-
ilarity on concepts), not only a≈. Then, the specification of the tolerance
relation would be left to a user. Our presented methods results from the
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Figure 2.31: Size reduction and speed-ups of factorization of random con-
texts, ÃLukasiewicz fuzzy logical connectives, no hedges (identity).
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Figure 2.32: Size reduction and speed-ups of factorization of random con-
texts, minimum-based fuzzy logical connectives, no hedges (identity).
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Figure 2.33: Size reduction and speed-ups of factorization of random con-
texts, ÃLukasiewicz fuzzy logical connectives, hedge ∗Y 1.
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Figure 2.34: Size reduction and speed-ups of factorization of random con-
texts, minimum-based fuzzy logical connectives, hedge ∗Y 1.
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properties of the similarity relation a≈ and are thus specific for this simi-
larity. A method of factorization directly from input data by a tolerance
relation on the ordinary concept lattice (from “classical” FCA, analyzing
data tables with binary attributes) was described in [27]. A direct extension
to data tables with graded (fuzzy) attributes is suggesting itself. The notion
of similarity of concepts (under the tolerance relation) would then be nat-
urally extended from similar/dissimilar to similar at least to some (truth)
degree.
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Chapter 3

Thresholds and shifted
attributes

3.1 Introduction

This short chapter presents an introductory exploration of a new approach
to reducing the number of formal concepts involving the idea of thresholds,
which was introduced in section 1.1. Do you remember it? OK, we remind,
and enter into more details. Given a collection A of objects, the collection
A↑ of all attributes shared by all objects from A is in general a fuzzy set,
i.e. attributes y belong to A↑ to various degrees A↑(y) ∈ L. Then we can
pick a threshold δ and consider a set δA↑ = {y |A↑(y) ≥ δ} of all attributes
which belong to A↑ to a degree greater than or equal to δ. It is simple,
and obviously it can be analogously considered for a collection of attributes.
Or even both! We also reveal that with δ = 1, this approach was proposed
independently in [34, 43] (actually not as thresholds described, but rather as
a way to eliminate, from certain point of view, unnatural fuzzy concepts). As
lately as in [25], this was extended to arbitrary δ. However, the extent- and
intent-forming operators defined in [25] do not form a Galois connection.
This shortcoming was recognized and removed in [26] where the authors
proposed new operators based on the idea of thresholds for general δ.
In section 3.2.1, we take a closer look at [26]. We show that while con-
ceptually natural and appealing1, the approach via thresholds, as proposed
in [26], can be seen as a particular (thresholded) case of the approach via
hedges. In particular, given a data table with fuzzy attributes, the fuzzy
concept lattices induced by the operators of [26] are isomorphic (and in fact,
almost the same) to fuzzy concept lattices with hedges induced from a data
containing so-called shifts of the given fuzzy attributes (shifted attributes).

1The proposed extent- and intent-forming operator are not so appealing visually and
practically, however.
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In FCA, an attribute is conceived as a collection of objects to which it ap-
plies. Therefore, fuzzy attribute can be considered as a fuzzy set A such
that a degree A(x) to which an object x belongs to A is interpreted as the
degree to which object x has attribute A. Given a fuzzy attribute A, i.e. a
fuzzy set A of objects, a shifted attribute (shifted by δ) is a fuzzy set δ → A
where δ is a truth degree of the shift.
This observation suggests two things. First, a (just sketched) combination
of the approach via hedges and shifted attributes and the approach via
thresholds and, second, a relation to a factorization by similarity of a fuzzy
concept lattice treated in previous chapter, since the shifts of fuzzy attributes
play an important role there (in fast computation of factor lattice), as we
have seen in sections 2.2.2 and 2.3.3. Of course, we will explore both of these
fancy interconnections, in section 3.2.2.
The main purpose of section 3.3 is to sketch some of the promising ideas for
future research.

Section 3.2 summarizes results recently presented in [14].

3.2 Fuzzy concept lattices defined by thresholds

3.2.1 New extent- and intent-forming operators

Take a look at the new operators proposed in [26]. In addition to the pair
of operators ⇑ : LX → LY (1.1) and ⇓ : LY → LX (1.2), the authors in
[26] define pairs of operators (we keep the notation of [26]) ? : 2X → 2Y

and ? : 2Y → 2X , ¤ : 2X → LY and ¤ : LY → 2X , and ♦ : LX → 2Y

and ♦ : 2Y → LX , as follows. Let δ be an arbitrary truth degree from L (δ
plays a role of a threshold). For A ∈ LX , C ∈ 2X , B ∈ LY , D ∈ 2Y define
C? ∈ 2Y and D? ∈ 2X by

C? = {y ∈ Y | ∧
x∈X(C(x) → I(x, y)) ≥ δ}, (3.1)

D? = {x ∈ X | ∧
y∈Y (D(y) → I(x, y)) ≥ δ}; (3.2)

C¤ ∈ LY and B¤ ∈ 2X by

C¤(y) = δ → ∧
x∈C I(x, y), (3.3)

B¤ = {x ∈ X | ∧
y∈Y (B(y) → I(x, y)) ≥ δ}; (3.4)

and A♦ ∈ 2Y and D♦ ∈ LX by

A♦ = {y ∈ Y | ∧
x∈X(A(x) → I(x, y)) ≥ δ}, (3.5)

D♦(x) = δ → ∧
y∈D I(x, y), (3.6)

for each x ∈ X, y ∈ Y .
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Denote the corresponding set of fixpoints of these pairs of operators by

B (X?, Y?, I) = {〈A,B〉 ∈ 2X × 2Y |A? = B,B? = A},
B (X¤, Y¤, I) = {〈A,B〉 ∈ 2X × LY |A¤ = B, B¤ = A}, (3.7)
B (X♦, Y♦, I) = {〈A,B〉 ∈ LX × 2Y |A♦ = B, B♦ = A},
B (X⇑, Y⇓, I) = {〈A,B〉 ∈ LX × LY |A⇑ = B,B⇓ = A} (= B (X, Y, I)).

Together with the operators ⇑ and ⇓, we can see the four pairs of operators
(and four types of concept lattices). One pair forming formal concepts with
both extent and intent being crisp sets, i.e. crisp formal concepts (constitut-
ing a ordinary concept lattice [15]), other two pairs forming formal concepts
of which one part (extent or intent) is a crisp set while the other part is a
fuzzy set (constituting a so-called one-sided fuzzy concept lattice [34, 43])
and finally, the pair forming formal concepts with both extent and intent
being fuzzy sets, i.e. fuzzy formal concepts (constituting a fuzzy concept
lattice). This is not very practical (among other aspects, for example, vi-
sual).

We now introduce a new pair of operators induced by a formal fuzzy context
〈X,Y, I〉. For δ, ε ∈ L, fuzzy sets A ∈ LX and B ∈ LY , consider fuzzy sets
A↑I,δ ∈ LY and B↓I,ε ∈ LX defined by

A↑I,δ(y) = δ → ∧
x∈X(A∗X (x) → I(x, y)), (3.8)

B↓I,ε(x) = ε → ∧
y∈Y (B∗Y (y) → I(x, y)). (3.9)

We will often write just A↑δ and B↓ε or even A↑ and B↓ if I, δ, and ε are
obvious, particularly if δ = ε.

Remark 6 Note that, due to the properties of →, we have that

A↑I,δ(y) = 1 iff δ ≤
∧

x∈X

(A∗X (x) → I(x, y)),

i.e. iff the degree to which y is shared by all objects from A is at least δ and,
analogously,

B↓I,ε(x) = 1 iff ε ≤
∧

y∈Y

(B∗Y (y) → I(x, y)),

i.e. iff the degree to which x shares all attributes from B is at least ε.

In general, A↑I,δ(y) can be thought of as a truth degree of “the degree to
which y is shared by all objects (. . . ) from A is at least δ and, analogously,
B↓I,ε(x) can be thought of as a truth degree of “the degree to which x shares
all attributes (. . . ) from B is at least ε. As such, they can be considered
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just another parametrization of the operators with and without hedges. We
sometimes call them thresholded operators (with hedges). We will show
that this general approach involving the idea of thresholds subsumes the
proposals of [26] as special cases. Moreover, unlike formulas (3.3) and (3.4),
and (3.5) and (3.6), formulas for operators ↑I,δ and ↓I,δ are symmetric and
form (only) fuzzy formal concepts.
The set

B (
X∗X

δ , Y ∗Y
ε , I

)
= {〈A,B〉 |A↑ = B, B↓ = A}

of all fixpoints of 〈↑, ↓〉 is called a (thresholded) fuzzy concept lattice (with
hedges) of 〈X, Y, I〉; elements 〈A,B〉 ∈ B (

X∗X
δ , Y ∗Y

ε , I
)

will be called formal
concepts of 〈X, Y, I〉; A and B are called the extent and intent of 〈A,B〉,
respectively. However, describing the structure of B (

X∗X
δ , Y ∗Y

ε , I
)

(under a
partial order ≤) remains an open problem to be studied. In the following,
we will focus on the case δ = ε only.

Remark 7 Since 1 → δ = δ for each δ ∈ L, we have A↑I,1 = A↑I and
B↓I,1 = B↓I and, therefore, B (

X∗X
1 , Y ∗Y

1 , I
)

= B (X∗X , Y ∗Y , I).

3.2.2 Reducing thresholds to shifted attributes and relation-
ship to factorization

The following key theorem shows that from a mathematical point of view,
B (

X∗X
δ , Y ∗Y

δ , I
)

is, in fact, a fuzzy concept lattice with hedges (i.e. without
thresholds) induced by a δ-shift δ → I of I.

Theorem 18 For any δ ∈ L, ↑I,δ coincides with ↑δ→I , and ↓I,δ coincides
with ↓δ→I . Therefore, B (

X∗X
δ , Y ∗Y

δ , I
)

= B (X∗X , Y ∗Y , δ → I).

PROOF. Using a → (b → c) = b → (a → c) and a → (
∧

j∈J bj) =∧
j∈J(a → bj) we get

A↑I,δ(y) = δ → ∧
x∈X(A∗X (x) → I(x, y)) =

=
∧

x∈X(δ → (A∗X (x) → I(x, y))) =
=

∧
x∈X(A∗X (x) → (δ → I(x, y))) = A↑δ→I (y).

One can proceed analogously to show that ↓I,δ coincides with ↓δ→I . Then the
equality B (

X∗X
δ , Y ∗Y

δ , I
)

= B (X∗X , Y ∗Y , δ → I) follows immediately. ¤

Remark 8 (1) Using [17], Theorem 18 yields that B (
X∗X

δ , Y ∗Y
δ , I

)
is a

complete lattice; we show a main theorem for B (
X∗X

δ , Y ∗Y
δ , I

)
below.

(2) In addition to A↑I,δ(y) = A↑δ→I = δ → A↑I we also have A↑I,δ(y) =
(δ ⊗A∗X)⇑I ; similarly for B↓I,δ .
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Recall, from previous chapter, that shifted fuzzy contexts 〈X, Y, a → I〉
play an important role in direct factorization of a fuzzy concept lattices
B (X, Y, I) and B (X∗X , Y ∗Y , I) by a similarity given by a parameter a, see
sections 2.2.2 and 2.3.3. Briefly, B (X,Y, a → I) is isomorphic to a factor
lattice B (X, Y, I) /a≈ (Theorem 8) where a≈ is an a-cut of a fuzzy equiv-
alence relation ≈ defined on B (X, Y, I). Similarily, B (X∗X , Y ∗Y , a → I) is
isomorphic to a factor lattice B (X∗X , Y ∗Y , I) /a≈ (Theorem 17) where a≈
is an a-cut of a fuzzy equivalence relation ≈ defined on B (X∗X , Y ∗Y , I),
providing at least one of the hedges is identity and two technical conditions
are satisfied (see section 2.3, ≈ has to be compatible with the other hedge
and a and a≈ must have the feature 2.7; ≈ and a≈ satisfy the conditions if
a is a fixed point of the (non-identity) hedge, cf. Lemma 9).
This means that the factor lattice by similarity a≈ and the thresholded lat-
tice by threshold a of B (X,Y, I) are the same (up to isomorphism); similarily
for B (X∗X , Y ∗Y , I) (if at least one of the hedges is identity). In other words,
the approaches to reducing the size of a fuzzy concept lattice (with hedges)
via factorization by a similarity a≈ and via extent- and intent-forming op-
erators thresholded by a threshold a lead to the same reduction.

The next theorem and Remark 9 show that the fuzzy concept lattices (3.7)
defined in [26] are isomorphic, and in fact identical, to fuzzy concept lattices
defined by (3.8) and (3.9) with appropriate choices of ∗X and ∗Y . As a
consequence, the approach by thresholds proposed in [26] is reducible to our
approach via hedges.

Theorem 19 Let B (X?, Y?, I), B (X¤, Y¤, I), and B (X♦, Y♦, I) denote the
concept lattices (3.7) defined by operators (3.1, 3.2, 3.3, 3.4, 3.5 and 3.6).

(1) B (X?, Y?, I) is isomorphic to B (
X∗X

δ , Y ∗Y
δ , I

)
, and due to Theorem 18

also to B (X∗X , Y ∗Y , δ → I), where both ∗X and ∗Y are globalizations
on L.

(2) B (X¤, Y¤, I) is isomorphic to B (
X∗X

δ , Y ∗Y
δ , I

)
, and due to Theorem

18 also to B (X∗X , Y ∗Y , δ → I), where ∗X is globalization and ∗Y is the
identity on L.

(3) B (X♦, Y♦, I) is isomorphic to B (
X∗X

δ , Y ∗Y
δ , I

)
, and due to Theorem

18 also to B (X∗X , Y ∗Y , δ → I), where ∗X is the identity and ∗Y is
globalization on L.

PROOF. We prove only (2); the proofs for (1) and (3) are similar. First,
we show that for 〈C, D〉 ∈ B (

X∗X
δ , Y ∗Y

δ , I
)

we have 〈1C, D〉 ∈ B (X¤, Y¤, I).
Indeed, for ∗X being globalization and ∗Y being identity we have 1C = C∗X

and D = D∗Y and thus

(1C)¤ = δ → ∧
x∈1C I(x, y) = δ → ∧

x∈X((1C)(x) → I(x, y)) =
= δ → ∧

x∈X(C∗X (x) → I(x, y)) = C↑I,δ ,
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and

D¤ = {x ∈ X | ∧
y∈Y (D(y) → I(x, y)) ≥ δ} =

= {x ∈ X | δ → ∧
y∈Y (D(y) → I(x, y)) = 1} =

= {x ∈ X |D↓I,δ(x) = 1} = 1(D↓I,δ) = 1C.

Clearly, 〈C, D〉 7→ 〈1C, D〉 defines an injective mapping of B (
X∗X

δ , Y ∗Y
δ , I

)
to B (X¤, Y¤, I). This mapping is also surjective. Namely, for 〈A,B〉 ∈
B (X¤, Y¤, I) we have 〈A↑I,δ↓I,δ , B〉 ∈ B (

X∗X
δ , Y ∗Y

δ , I
)

and A = 1(A↑I,δ↓I,δ).
Indeed, since A = A∗X , [12], ↑I,δ = ↑δ→I , and ↓I,δ = ↓δ→I give A↑I,δ↓I,δ↑I,δ =
A↑I,δ = A¤ = B. Furthermore, B↓I,δ = A↑I,δ↓I,δ . This shows 〈A↑I,δ↓I,δ , B〉 ∈
B (

X∗X
δ , Y ∗Y

δ , I
)
. Observing

B¤ = δ(B↓I ) = 1(B↓δ→I ) = 1(B↓I,δ) = 1(A↑I,δ↓I,δ)

finishes the proof. ¤

Remark 9 (1) As one can see from the proof of Theorem 19, an isomor-
phism exists such that the corresponding elements 〈A,B〉 ∈ B (X¤, Y¤, I)
and 〈C, D〉 ∈ B (

X∗X
δ , Y ∗Y

δ , I
)

are almost the same, namely, 〈A,B〉 = 〈1C, D〉.
A similar fact pertains to (1) and (3) of Theorem 19 as well.
(2) Alternatively, Theorem 19 can be proved using results from [19]. Con-
sider e.g. B (X¤, Y¤, I): It can be shown that B (X¤, Y¤, I) coincides with
one-sided fuzzy concept lattice of 〈X,Y, δ → I〉 (in the sense of [34]); there-
fore, by [19], B (X¤, Y¤, I) is isomorphic to a fuzzy concept lattice with
hedges where ∗X is globalization and ∗Y is identity, i.e. to B (X∗X , Y, δ → I).

From (3.1) and (3.2) one easily obtains the following assertion.

Corollary 20 The concept lattice B (X?, Y?, I) coincides with an ordinary
concept lattice B (

X,Y, δI
)
, where δI = {〈x, y〉 | I(x, y) ≥ δ} is the δ-cut of I.

PROOF. B (X?, Y?, I) is defined by operators ? ((3.1) and (3.2)): B (X?, Y?, I) =
{〈A,B〉 ∈ 2X×2Y |A? = B, B? = A}. For A ∈ 2X , A? = {y ∈ Y | ∧

x∈X(A(x) →
I(x, y)) ≥ δ} = {y ∈ Y | ∧

x∈A I(x, y) ≥ δ} = {y ∈ Y | ∀x ∈ A : I(x, y) ≥
δ} = {y ∈ Y | ∀x ∈ A : (x, y) ∈ δI}; similarily for B ∈ 2Y . Hence the
operators define B (

X, Y, δI
)

too. ¤

Remark 10 The foregoing results show that B (X?, Y?, I), B (X¤, Y¤, I)
and B (X♦, Y♦, I) are isomorphic to B (

X∗X
δ , Y ∗Y

δ , I
)

(with appropriate choices
of ∗X and ∗Y ). Moreover, they are almost identical, but not equal. Alterna-
tively, one can proceed so as to define our operators by

A↑I,δ(y) =
(
δ → ∧

x∈X(A(x) → I(x, y))
)∗Y , (3.10)

B↓I,ε(x) =
(
ε → ∧

y∈Y (B(y) → I(x, y))
)∗X . (3.11)
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Then, we even have the equality between the thresholded concept lattices and
B (

X∗X
δ , Y ∗Y

δ , I
)

(with the same choices of ∗X and ∗Y ). We still prefer (3.8)
and (3.9) to (3.10) and (3.11) for reasons like clearer interpretation, easier
use and, last but not least, relation to other (earlier) approaches.

Main theorem of fuzzy concept lattices defined by thresholds and
hedges

Due to Theorem 18 and Theorem 19, using [17] we immediately obtain main
theorems of concept lattices defined by thresholds (3.7) and, as well, for our
general case of thresholded fuzzy concept lattice with hedges, B (

X∗X
δ , Y ∗Y

δ , I
)
.

Theorem 21 (1) B (
X∗X

δ , Y ∗Y
δ , I

)
is under ≤ a complete lattice where the

infima and suprema are given by
∧

j∈J〈Aj , Bj〉 = 〈(⋂j∈J Aj)↑I,δ↓I,δ , (
⋃

j∈J B∗Y
j )↓I,δ↑I,δ〉, (3.12)

∨
j∈J〈Aj , Bj〉 = 〈(⋃j∈J A∗X

j )↑I,δ↓I,δ , (
⋂

j∈J Bj)↓I,δ↑I,δ〉. (3.13)

(2) Moreover, an arbitrary complete lattice K = 〈K,≤〉 is isomorphic to
B (

X∗X
δ , Y ∗Y

δ , I
)

iff there are mappings γ : X × fix(∗X) → K, µ : Y ×
fix(∗Y ) → K such that

(i) γ(X × fix(∗X)) is
∨

-dense in K, µ(Y × fix(∗Y )) is
∧

-dense in K;

(ii) γ(x, a) ≤ µ(y, b) iff a⊗ b⊗ δ ≤ I(x, y),

with fix(∗) = {a | a∗ = a} denoting the set of all fixpoints of ∗.

3.3 Summary and topics for future work

We presented the approach of reducing the size of the fuzzy concept lattice
based on the idea of thresholds. We showed that the thresholded extent- and
intent-forming operators (with hedges) ↑δ and ↓δ based on this idea form, in
fact, a particular case of operators (with hedges) defined on data table with
shifted fuzzy attributes, ↑δ→I and ↓δ→I . As a result, the results and algo-
rithms developed within the framework of hedges are automatically available
for the approaches via thresholds. Although the problems of operators with
thresholds and their concept lattices can be reduced to problems of opera-
tors without thresholds and their concept lattices, the idea of thresholds is
intuitively appealing, the thresholds being parameters which influence the
size of the resulting concept lattices.
Furthermore, we revealed that the approach of reducing the size of a fuzzy
concept lattice (with hedges) via threshold equals the approach of reducing
the size of a fuzzy concept lattice via factorization by similarity a≈ presented
in previous chapter. This result, with respect to which was said in the
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previous paragraph, is indeed not surprising, since from the previous chapter
we know that the factor lattice can be easily computed from data table
modified by shifts of attributes, a → I. Both approaches, via thresholds and
via factorization by a≈ are thus but the variants of the approach of reducing
the size of a fuzzy concept lattice (with hedges) via shifted attributes.
Shifted attributes thus evidently play an important role in fuzzy FCA, so it
certainly deserve further concern in future research. For example, the topic
of upcoming research is to answer the question on the relation between con-
cept lattices constructed from a data table with shifted fuzzy attributes
using different (comparable) values of the reduction, shifting/thresholding,
parameter, δ1 ≤ δ2? We already know that the smaller parameter we
use the smaller lattice we get. But are e.g. concepts of the smaller lat-
tice B (X∗X , Y ∗Y , δ1 → I) = B

(
X∗X

δ1
, Y ∗Y

δ1
, I

)
contained in the larger lattice

B (X∗X , Y ∗Y , δ2 → I) = B
(
X∗X

δ2
, Y ∗Y

δ2
, I

)
?
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Conclusion

The thesis summarizes and compares the results of two approaches to
reduce the size of fuzzy concept lattices (with hedges). In both approaches,
the amount of reduction is parametrized by the user. The first approach
goes through factorizing (i.e. providing a granularized view on) the concept
lattice by similarity parametrized by user-defined parameter and the two
ways of computation of factor lattice directly from input data (i.e. without
first computing the whole lattice and subsequent factorizing) were described.
The theoretical insight is comped with illustrative examples and extensive
experiments. The second approach uses the idea of thresholds, user-defined
parameters, influencing the shape of formal concepts. We reveal that the
two approaches lead to the same results (isomorphic smaller concept lattices)
and that both relates the approach of fuzzy FCA with shifted attributes.
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[8] Bělohlávek R.: Concept lattices and order in fuzzy logic. Annals of Pure
and Applied Logic 128(2004), 277–298.
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