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Abstract. The paper presents an utilization of formal concept analy-
sis in input data preprocessing for machine learning. Two preprocessing
methods are presented. The first one consists in extending the set of
attributes describing objects in input data table by new attributes and
the second one consists in replacing the attributes by new attributes. In
both methods the new attributes are defined by certain formal concepts
computed from input data table. Selected formal concepts are so-called
factor concepts obtained by boolean factor analysis, recently described
by FCA. The ML method used to demonstrate the ideas is decision tree
induction. The experimental evaluation and comparison of performance
of decision trees induced from original and preprocessed input data is per-
formed with standard decision tree induction algorithms ID3 and C4.5
on several benchmark datasets.

1 Introduction

Formal concept analysis (FCA) if ofted proposed to be used as a method for data
preprocessing before the data is processed by another data mining or machine
learning method [15, 8]. The results produced by these methods indeed depend
on the structure of input data. In case of relational data described by objects
and their attributes (object-attribute data) the structure of data is defined by
the attributes and, more particularly, by dependencies between attributes. Data
preprocessing in general then usually consits in transformation of the set of
attributes to another set of attributes in order to enable the particular data
mining or machine learning method to achieve better results [13, 14].

The paper presents a data preprocessing method utilizing formal concept
analysis in a way that certain formal concepts are used to create new attributes
describing the original objects. Selected formal concepts are so-called factor con-
cepts obtained by boolean factor analysis, recently described by means of FCA
in [1]. First, attributes defined by the concepts are added to the original set of
attributes, extending the dimensionality of data. New attributes are supposed
to aid the data mining or machine learning method. Second, the original at-
tributes are replaced by the new attributes which usually means the reduction
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of dimensionality of data since the number of factor concepts is usually smaller
than the number of original attributes. Here, a main question arises, whether the
reduced number of new attributes can better describe the input objects for the
subsequent data mining or machine learning method to produce better results.

There have been several attempts to transform the attribute space in order
to improve the results of data mining and machine learning methods. From
the variety of these methods we focus on decision tree induction. The most
relevant to our paper is are methods known as constructive induction or feature
construction [7], where new compound attributes are constructed from original
attributes as conjunctions and/or disjunctions of the attributes [11] or arithmetic
operations [12] or the new attributes are expressed in m-of-n form [9]. An oblique
decision tree [10] is also connected to our approach in a sense that multiple
attributes are used in the splitting condition (see section 3.1) instead of single
attribute at a time. Typically linear combinations of attributes are looked for,
e.g. [2]. Learning the condition is, however, computationally challenging.

Interestingly, we have not found any paper solely on this subject utilizing
formal concept analysis. There have been several FCA-based approaches on con-
struction of a whole learning model, commonly called lattice-based or concept-
based machine learning approaches, e.g. [6], see [3] for a survey and comparison,
but the usage of FCA to transform the attributes and create new attributes to
aid another machine learning method is discussed very marginally or not at all.
The present paper is thus a move to fill the gap.

The remainder of the paper is organized as follows. The next section contains
preliminaries from FCA and introduction to boolean factor analysis, including
the necessary tranformations between attribute and factor spaces. The main
part of the paper is section 3 demonstrating the above sketched ideas on selected
machine mearning method – decision tree induction. An experimental evaluation
on selected data mining and machine learning benchmark datasets is provided
in section 4. Finally, section 5 draws the conclusion.

2 Preliminaries

2.1 Formal Concept Analysis

In this section we summarize basic notions of FCA. For further information we
refer to [4]. An object-attribute data table is identified with a triplet 〈X,Y, I〉
where X is a non-empty set of objects, Y is a non-empty set of attributes, and
I ⊆ X × Y is an object-attribute relation. Objects and attributes correspond to
table rows and columns, respectively, and 〈x, y〉 ∈ I indicates that object x has
attribute y (table entry corresponding to row x and column y contains × or 1;
otherwise it contains blank symbol or 0). In terms of FCA, 〈X,Y, I〉 is called a
formal context. For every A ⊆ X and B ⊆ Y denote by A↑ a subset of Y and
by B↓ a subset of X defined as

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I},

B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}.
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That is, A↑ is the set of all attributes from Y shared by all objects from A (and
similarly for B↓). A formal concept in 〈X,Y, I〉 is a pair 〈A,B〉 of A ⊆ X and
B ⊆ Y satisfying A↑ = B and B↓ = A. That is, a formal concept consists of a
set A (so-called extent) of objects which are covered by the concept and a set
B (so-called intent) of attributes which are covered by the concept such that A
is the set of all objects sharing all attributes from B and, conversely, B is the
collection of all attributes from Y shared by all objects from A. Formal concepts
represent clusters hidden in object-attribute data.

A set B(X,Y, I) = {〈A,B〉 |A↑ = B,B↓ = A} of all formal concepts in
〈X,Y, I〉 can be equipped with a partial order ≤. The partial order models a
subconcept-superconcept hierarchy, e.g. dog ≤ mammal, and is defined by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1).

B(X,Y, I) equipped with ≤ happens to be a complete lattice, called the concept
lattice of 〈X,Y, I〉. The basic structure of concept lattices is described by the
so-called basic theorem of concept lattices, see [4].

2.2 Boolean Factor Analysis

Boolean factor analysis is a matrix decomposition method which provides a
representation of an object-attribute data matrix by a product of two different
matrices, one describing objects by new attributes or factors, and the other
describing factors by the original attributes [5]. Stated as the problem, the aim
is to decompose an n × m binary matrix I into a boolean product A ◦ B of an
n× k binary matrix A and a k×m binary matrix B with k as small as possible.
Thus, instead of m original attributes, one aims to find k new attributes, called
factors.

Recall that a binary (or boolean) matrix is a matrix whose entries are 0 or
1. A boolean matrix product A ◦ B of binary matrices A and B is defined by

(A ◦ B)ij =

k
∨

l=1

Ail · Blj ,

where
∨

denotes maximum and · is the usual product. The interperetations of
matrices A and B is: Ail = 1 means that factor l applies to object i and Blj = 1
means that attribute j is one of the manifestations of factor l. Then A ◦B says:
“object i has attribute j if and only if there is a factor l such that l applies to i
and j is one of the manifestations of l”. As an example,
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The (solution to the) problem of decomposition binary matrices was recently
described by means of formal concept analysis [1]. The description lies in an
observation that matrices A and B can be constructed from a set F of formal
concepts of I. In particular, if B(X,Y, I) is the concept lattice associated to I,
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with X = {1, . . . , n} and Y = {1, . . . ,m}, and

F = {〈A1, B1〉, . . . , 〈Ak, Bk〉} ⊆ B(X,Y, I),

then for the n × k and k × m matrices AF and BF defined in such a way that
the l-th column (AF ) l of AF consists of the characteristic vector of Al and the
l-th row (BF )l of BF consists of the characteristic vector of Bl the following
universality theorem holds:

Theorem 1. For every I there is F ⊆ B(X,Y, I) such that I = AF ◦ BF .

Moreover, decompositions using formal concepts as factors are optimal in
that they yield the least number of factors possible:

Theorem 2. Let I = A◦B for n×k and k×m binary matrices A and B. Then

there exists a set F ⊆ B(X,Y, I) of formal concepts of I with

|F| ≤ k

such that for the n × |F | and |F | × m binary matrices AF and BF we have

I = AF ◦ BF .

Formal concepts F in the above theorems are called factor concepts. Each
factor concept determines a factor. For the constructive proof of the last theorem,
examples and further results, we refer to [1].

2.3 Transformations between attribute and factor spaces

For every object i we can consider its representations in the m-dimensional
Boolean space {0, 1}m of original attributes and in the k-dimensional Boolean
space {0, 1}k of factors. In the space of attributes, the vector representing object
i is the i-th row of the input data matrix I, and in the space of factors, the
vector representing i is the i-th row of the matrix A.

Natural transformations between the space of attributes and the space of
factors is described by the mappings g : {0, 1}m → {0, 1}k and h : {0, 1}k →
{0, 1}m defined for P ∈ {0, 1}m and Q ∈ {0, 1}k by

(g(P ))l =

m
∧

j=1

(Blj → Pj), (1)

(h(Q))j =

k
∨

l=1

(Ql · Blj), (2)

for 1 ≤ l ≤ k and 1 ≤ j ≤ m. Here, → denotes the truth function of classical
implication (1 → 0 = 0, otherwise 1), · denotes the usual product, and

∧

and
∨

denote minimum and maximum, respectively. (1) says that the l-th component
of g(P ) ∈ {0, 1}k is 1 if and only if for every attribute j, Pj = 1 for all positions
j for which Blj = 1, i.e. the l-th row of B is included in P . (2) says that the j-th
component of h(Q) ∈ {0, 1}m is 1 if and only if there is factor l such that Ql = 1
and Blj = 1, i.e. attribute j is a manifestation of at least one factor from Q.

For results showing properties and describing the geometry behind the map-
pings g and h, see [1].
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3 Boolean Factor Analysis and Decision Trees

The machine learning method which we use in this paper to demonstrate the
ideas presented in section 1 is decision tree induction.

3.1 Decision Trees

Decision trees represent the most commonly used method in data mining and
machine learning [13, 14]. A decision tree can be considered as a tree represen-
tation of a function over attributes which takes a finite number of values called
class labels. The function is partially defined by a set of vectors (objects) of
attribute values and the assigned class label, usually depicted by a table. An
example function is depicted in Fig. 1. The goal is to construct a tree that ap-
proximates the function with a desired accuracy. This is called a decision tree
induction. An induced decision tree is typically used for classification of objects
into classes, based on the objects’ attribute values. A good decision tree is sup-
posed to classify well both objects described by the input data table as well as
“unseen” objects.

Each non-leaf tree node of a decision tree is labeled by an attribute, called a
splitting attribute for this node. Such a node represents a test, according to which
objects covered by the node are split into v subcollections which correspond to v
possible outcomes of the test. In the basic setting, the outcomes are represented
by values of the splitting attribute. Leaf nodes of the tree represent collections
of objects all of which, or the majority of which, have the same class label. An
example of a decision tree is depicted in Fig. 4.

Many algorithms for the construction of decision trees were proposed in the
literature, see e.g. [14]. A strategy commonly used consists of constructing a
decision tree recursively in a top-down fashion, from the root node to the leaves,
by successively splitting existing nodes into child nodes based on the splitting
attribute. A critical point in this strategy is the selection of splitting attributes in
nodes, for which many approaches were proposed. These include the well-known
approaches based on entropy measures, Gini index, classification error, or other
measures defined in terms of class distribution of the objects before and after
splitting, see [14] for overviews.

Remark 1. In machine learning, and in decision trees at particular, the input
data attributes are very often categorical attributes. To utilize FCA with the
input data, we need to transform the categorical attributes to binary attributes
because, in its basic setting, FCA works with binary attributes. A transforma-
tion of input data which consists in replacing non-binary attributes into binary
ones is called conceptual scaling in FCA [4]. Note that we need not transform
the class attribute, i.e. the attribute determining to which class the object be-
longs, because we transform the input attributes only in our data preprocessing
method.

Throughout this paper, we use input data from Fig. 1 (top) to illustrate
the data preprocessing. The data table contains sample animals described by
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attributes body temperature, gives birth, fourlegged, hibernates, and mammal,
with the last attribute being the class. After an obvious transformation (nominal
scaling) of the input attributes, we obtain the data depicted in Fig. 1 (bottom).
Boolean factor analysis which we use in our method is applied on data which
we obtain after such transformation. For illustration, the decision tree induced
from the data is depicted in Fig. 4 (left).

Name body temp. gives birth fourlegged hibernates mammal

cat warm yes yes no yes
bat warm yes no yes yes

salamander cold no yes yes no
eagle warm no no no no
guppy cold yes no no no

Name bt cold bt warm gb no gb yes fl no fl yes hb no hb yes mammal

cat 0 1 0 1 0 1 1 0 yes
bat 0 1 0 1 1 0 0 1 yes

salamander 1 0 1 0 0 1 0 1 no
eagle 0 1 1 0 1 0 1 0 no
guppy 1 0 0 1 1 0 1 0 no

Fig. 1. Input data table (top) and corresponding data table for FCA (bottom)

3.2 Extending the collection of attributes

The first approach proposed in our data preprocessing method is the extension
of the collection of attributes by new attributes which are created using boolean
factor analysis. In praticular, the new attributes are represented by factors ob-
tained from the decomposition of input data table.

Let I ⊆ X × Y be input data table describing objects X = {x1, . . . , xn} by
binary attributes Y = {y1, . . . , ym}. Considering I as a n × m binary matrix,
we find a decomposition I = A ◦ B of I into the n × k matrix A describing
objects by factors F = {f1, . . . , fk} and k × m matrix B explaining factors F
by attributes. The decomposition of example data table in Fig. 1 is depicted in
Fig. 2. The new collection of attributes Y ′ is then defined to be Y ′ = Y ∪ F
and the extended data table I ′ ⊆ X × Y ′ is defined by I ′ ∩ (X × Y ) = I and
I ′ ∩ (X ×F ) = A. Hence the new collection of attributes is the union of original
attributes and factors and the extended data table is the apposition of original
data table and the table representing the matrix describing objects by factors.
Fig. 3 depicts the extended data table.

The key part is the decomposition of the original data table. In the decompo-
sition of binary matrices the aim is to find the decomposition with the number
of factors as small as possible. However, since the factors, as new attributes, are
used in the process of decision tree induction in our application, we are looking
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Fig. 2. Boolean matrix decomposition of input data in Fig. 1

Name bc bw gn gy fn fy hn hy f1 f2 f3 f4 f5 f6 mammal

cat 0 1 0 1 0 1 1 0 0 0 1 0 0 1 yes
bat 0 1 0 1 1 0 0 1 0 0 1 0 1 0 yes

salamander 1 0 1 0 0 1 0 1 0 0 0 1 0 0 no
eagle 0 1 1 0 1 0 1 0 1 0 0 0 0 0 no
guppy 1 0 0 1 1 0 1 0 0 1 0 0 0 0 no

Fig. 3. Extended data table for input data in Fig. 1

also for the factors which have a good “decision ability”, i.e. that the factors are
good candidates to be splitting attributes. To compute the decomposition we
can use the algorithms presented in [1], with modified criterion of optimality of
computed factors. In short, the algorithms apply a greedy heuristic approach to
search in the space of all formal concepts for the factor concepts which cover the
largest area of still uncovered 1s in the input data table. The criterion function
of optimality of a factor is thus the “cover ability” of the corresponding factor
concept, in particular the number of uncovered 1s in the input data table which
are covered by the concept, see [1]. The function value is, for the purposes of
this paper, translated to the interval [0, 1] (with the value of 1 meaning the most
optimal) by dividing the value by the total number of still uncovered 1s in the
data table.

The new criterion function c : 2X×Y → [0, 1] of optimality of factor concept
〈A,B〉 is:

c(〈A,B〉) = w · cA(〈A,B〉) + (1 − w) · cB(〈A,B〉), (3)

where cA(〈A,B〉) ∈ [0, 1] is the original criterion function of the “cover ability”
of factor concept 〈A,B〉, cB(〈A,B〉) ∈ [0, 1] is a criterion function of the “deci-
sion ability” of factor concept 〈A,B〉 and w is a weight of preference among the
functions cA and cB . Let us focus on the function cB . The function measures the
goodness of the factor, defined by the factor concept, as splitting attribute. As
was mentioned in section 3.1, in decision trees, a common approaches to selec-
tion of splitting attribute are based on entropy measures. In these approaches,
an attribute is the better splitting attribute the lower is the weighted sum of
entropies of subcollections of objects after splitting the objects based on the



194 Jan Outrata

attribute. We thus design the function cB to be such a measure:

cB(〈A,B〉) = 1 −

(

|A|

|X|
·

E(class|A)

− log2
1

|V (class|A)|

+
|X \ A|

|X|
·

E(class|X \ A)

− log2
1

|V (class|X\A)|

)

,

(4)

where V (class|A) is the set of class labels assigned to objects A and E(class|A)
is the entropy of objects A based on the class defined as usual by:

E(class|A) = −
∑

l∈V (class|A)

p(l|A) · log2 p(l|A), (5)

where p(l|A) is the fraction of objects A with assigned class label l. The value
of − log2

1
|V (class|A)| in (4) is the maximal possible value of entropy of objects A

in the case the class labels V (class|A) are assigned to objects A evenly and the
purpose of it is to normalize the value of cB to the interval [0, 1]. Note that we
put 0

0 = 0 in calculations in (4).

Now, having the extended data table I ′ ⊆ X × (Y ∪ F ) containing new
attributes F , the decision tree is induced from the extended data table instead of
the original data table I. The class labels assigned to objects remain unchanged,
see Fig. 3. For ilustration, the decision tree induced from data table in Fig. 3 is
depicted in Fig. 4 (right). We can see that the data can be decided by a single
attribute, namely, factor f3 the manifestations of which are original attributes bt

warm and gb yes. Factor f3, as the combination of the two attributes, is a better
splitting attribute in decision tree induction than the two attributes alone.

body temp.

gives birth no

no yes

warm cold

no yes

f3

yes no

1 0

Fig. 4. The decision trees induced from original data table in Tab. 1 (left) and from
extended data table in Tab. 3 (right)

The resulted decision tree is used as follows. When classifying an object x
described by original attributes Y as a vector Px ∈ {0, 1}m in the (original)
attribute space, we first need to compute the description of the object by new
attributes/factors F as a vector g(Px) ∈ {0, 1}k in the factor space. This is
accomplished by (1) using the matrix B explaining factors in terms of origi-
nal attributes. The object described by concatenation of Px and g(Px) is then
classified by the decision tree in a usual way.

For instance, an object described by original attributes Y as vector (10011010)Y

is described by factors F as vector (010000)F . The object described by concate-
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nation of these two vectors is classified by class label no by the decision tree in
Fig. 4 (right).

3.3 Reducing the collection of attributes

The second approach consits in the replacement of original attributes by factors,
i.e. discarding the original data table. Hence the new collection of attributes Y ′

is defined to be Y ′ = F and the new data table I ′ ⊆ X × Y ′ is put to I ′ = A,
where A is the n × k binary matrix describing objects by factor resulting from
the decomposition I = A ◦ B of input data table I. Hence the new reduced
data table for example data in Fig. 1 is a table depicted in Fig. 3 restricted to
attributes f1, . . . , f6.

Since the number of factors is usually smaller than the number of attributes,
see [1], this transformation usually leads to the reduction of dimensionality of
data. However, the transformation of objects from attribute space to the factor
space is not an injective mapping. In particular, the mapping g from attribute
vectors to factor vectors maps large convex sets of objects to the same points
in the factor space, see [1] for details. Namely, for two distinct objects x1, x2 ∈
X with different attributes, i.e. described by different vectors in the space of
attributes, Px1

6= Px2
, which have different class labels assigned, class(x1) 6=

class(x2), the representation of both x1, x2 by vectors in the factor space is the
same, g(Px1

) = g(Px2
).

Consider the relation ker(g) (the kernel relation of g) describing such a sit-
uation. The class [x]ker(g) ∈ X/ker(g) for an object x ∈ X contains objects
represented in (original) attribute space which are mapped to the same object
x represented in factor space. The class label assigned to each object x ∈ X in
the new data table I ′ is the majority class label for the class [x]ker(g) ∈ X/ker(g)
defined as follows: a class label l is a majority class label for [x]ker(g) if l is as-
signed to the most of objects from [x]ker(g), i.e. if l = class(x1) for x1 ∈ [x]ker(g)

such that for each x′ ∈ [x]ker(g) it holds:

|{x2 ∈ [x]ker(g) | class(x2) = l}| ≥ |{x2 ∈ [x]ker(g) | class(x2) = class(x′)}|.

Finally, the decision tree is induced from the transformed data table I ′ ⊆
X × F , where class labels assigned to each object x ∈ X is the majority class
label for the class [x]ker(g) ∈ X/ker(g). Similarily as in the first approach in
section 3.2, when classifying an object x described by original attributes Y as
a vector Px ∈ {0, 1}m in the (original) attribute space, we first compute the
description of the object by factors F as a vector g(Px) ∈ {0, 1}k in the factor
space. The object described by g(Px) is classified by the decision tree. In our
example, the decision tree induced from reduced data table (the table in Fig. 3
restricted to attributes f1, . . . , f6) is the same as the tree induced from the
extended data table, i.e. the tree depicted in Fig. 4 (right).
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4 Experimental Evaluation

We performed series of experiments to evaluate our data preprocessing method.
The experiments consist in comparing the performance of created machine learn-
ing models (e.g. decision trees) induced from original and preprocessed input
data. In the comparison we used reference decision tree algorithms ID3 and
C4.5 [13] (entropy and information gain based) and also an instance based
learning method (IB1). The algorithms were borrowed and run from Weka 1,
a software package that contains implementations of machine learning and data
mining algorithms in Java. Default Weka’s parameters were used for the algo-
rithms.

Table 1. Characteristics of datasets used in experiments

Dataset No. of attributes (binary) No. of objects Class distribution

breast-cancer 9(51) 277 196/81

kr-vs-kp 36(74) 3196 1669/1527

mushroom 21(125) 5644 3488/2156

tic-tac-toe 9(27) 958 626/332

vote 16(32) 232 124/108

zoo 15(30) 101 41/20/5/13/4/8/10

The experiments were done on selected public real-world datasets from UCI
Machine Learning Repository. The selected datasets are from different areas
(medicine, biology, zoology, politics, games). All the datasets contain only cate-
gorical attributes with one class label attribute and the datasets were cleared of
objects containing missing values. Basic characteristics of the datasets are de-
picted in Tab. 1. The numbers of attributes are of original categorical attributes
and, in brackets, of binary attributes after nominal scaling (see remark 1). The
experiments were done using the 10-fold stratified cross-validation test. The fol-
lowing results are of averaging 10 execution runs on each dataset with randomly
ordered records.

Due to the limited scope of the paper we show only the results of data
preprocessing by reducing the original attributes to factors and the results for
adding the factors to the collection of attributes are postponed to the full version
of the paper. The results are depicted in Tab. 2. The tables show ratios of
the average percentage rates of correct classifications for preprocessed data and
original data, i.e. the values indicate the increase factor of correct classifications
for preprocessed data. The values are for both training (upper number in the
table cell) and testing (lower number) datasets for each algorithm and dataset
being compared, plus the average over all datasets. In the case of top table the

1 Waikato Environment for Knowledge Analysis, available at
http://www.cs.waikato.ac.nz/ml/weka/
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criterion of optimality of generated factors (3) was set to the original criterion
function of the “cover ability” of factor concept, i.e. the original criterion used
in the algorithms from [1]. This corresponds to setting w = 1 in (3). In the case
of bottom table the criterion of optimality of generated factors was changed to
the function of the “decision ability” described in section 3.2, i.e. w = 0 in (3).

Table 2. Classification accuracy for datasets from Tab. 1, for w = 1 (top) and w = 0
(bottom table) in (3)

training %

testing %
breast-cancer kr-vs-kp mushroom tic-tac-toe vote zoo average

ID3
1.020

1.159

1.000

0.993

1.000

1.000

1.000

1.123

1.000

0.993

1.018

0.962

1.006

1.038

C4.5
1.031

0.989

0.998

0.994

1.000

1.000

1.028

1.092

0.998

0.994

1.006

0.940

1.010

1.002

IB1
1.020

0.970

1.000

1.017

1.000

1.000

1.000

1.000

1.000

1.005

1.020

0.965

1.007

0.993

training %

testing %
breast-cancer kr-vs-kp mushroom tic-tac-toe vote zoo average

ID3
1.020

1.153

1.000

1.000

1.000

1.000

1.000

1.157

1.000

1.017

1.018

0.980

1.006

1.051

C4.5
1.047

1.035

1.000

0.998

1.000

1.000

1.033

1.138

1.000

1.007

1.006

0.958

1.014

1.023

IB1
1.020

0.951

1.000

1.083

1.000

1.000

1.000

1.213

1.000

1.033

1.020

0.967

1.007

1.041

We can see that while not inducing worse learning model at average on train-
ing datasets the methods have better performance at average on testing dataset
for input data preprocessed by our methods (with the exception of dataset zoo
which has more than two values of class attribute). For instance, ID3 method
has better performance by 3.8% (5.4% without zoo) for criterion of optimality
of generated factors being the original criterion function of the “cover ability”
of factor concept, while for criterion of optimality of generated factors being
the function of the “decision ability” the performance is better by 5.1% (6.5%
without zoo). The results for adding the factors to the collection of attributes
are very similar, with ±1% difference to the results for reducing the original
attributes to factors, with the exception of dataset zoo, where the difference was
+4%.



198 Jan Outrata

5 Conclusion

We presented two methods of preprocessing input data to machine learning
based on formal concept analysis (FCA). In the first method, the collection of
attributes describing objects is extended by new attributes while in the second
method, the original attributes are replaced by the new attributes. Both meth-
ods utilize boolean factor analysis, recently described by FCA, in that the new
attributes are defined as factors computed from input data. The number of fac-
tors is usually smaller than the number of original attributes. The methods were
demonstrated on the induction of decision trees and an experimental evaluation
indicates usefullness of such preprocessing of data: the decision trees induced
from preprocessed data outperformed decision trees induced from original data
for two entropy-based methods ID3 and C4.5.
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